Human cytomegalovirus UL76 induces chromosome aberrations

Visit for more related articles at Journal of Biomedical Science & Applications


Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells.
To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76.
We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells.
We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels.
Myriad chromosomal or genomic abnormalities are common in viral lytic and latent infected cells, and even in virus-associated tumors. Recent studies have consistently shown that cellular defense mechanisms recognize infections involving a wide range of DNA and RNA viruses as abnormally damaged DNA, including human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), herpes simplex virus (HSV-1), adenovirus, and Simian virus 40 (SV40). DNA damage responses and repair pathways are thus activated after infection.

Select your language of interest to view the total content in your interested language

Viewing options

Flyer image

Share This Article