

8th International Conference on Smart Materials and Structures

August 01-02, 2019 Dublin, Ireland

Nano Res Appl 2019, Volume 05

Synthesis of novel perovskite materials $\mbox{NaNbO}_{\rm 3}$ doped with sulfur

Adnan Ali, Brahim Aissa and Fadwa El Melluohi

Qatar Environment & Energy Research Institute-Hamad Bin Khalifa University, Qatar

The study herein reports the synthesis of NaNbO₃ powders doped with sulfur. Sulfur doped NaNbO₃ was synthesized by mixing precursors NbCl₂, Na₂S₂O₃ and sulfur in PTFE chamber of stainless steel hydrothermal unit and heated at 200°C for 20h. Powdered obtained after centrifugation was calcinated was at 400°C for 2h in N₂ controlled environment in a tube furnace. The morpho-structural and optical properties of the obtained materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)/electron probe microanalysis (EPMA) and ultraviolet-visible (UV-Vis) spectroscopy. Electron probe microanalysis has

confirmed 12.6% (atomic) of sulfur doping into NaNbO₃. Compared to pristine NaNbO₃; energy band gap widening and XRD peaks shifting and broadening have observed for sulfur doped NaNbO₃ powders. This energy band gap widening is vital and could be a novel Pb-free candidate for Perovskite Solar Cells and other applications. This study opens the doors for further investigations of sulfur doping into NaNbO₃ perovskite structure to optimize the doping concentration which results in optimum optoelectrical properties and open a broad spectrum of applications for this novel material.

adali@hbku.edu.qa