

13th Edition of International Conference on

Advances in Tissue Engineering and Biomaterials Science

June 17-18, 2019 London, UK

Permyakova Elizaveta, J Biomedical Sci 2019, Volume 08

Ag-doped PCL nanofibers for tissue engineering

Permyakova Elizaveta¹, Manakhov Anton¹, Sheveyko Alexander¹ Polčak Josef ^{2,3}, Zajíčková Lenka⁴, Kovalskii Andrey¹, Ignatov Sergey⁵ Shtansky Dmitry¹

¹National University of Science and Technology "MISiS", Russia

²Institute of Physical Engineering, Brno University of Technology, Czech Republic ³CEITEC-Central European Institute of Technology, Brno University of Technology, Czech Republic

⁴RG Plasma Technologies, CEITEC – Central European Institute of Technology, Masaryk University, Czech Republic

⁵State Research Center for Applied Microbiology and Biotechnology, Russia

Doly-E-caprolactone (PCL) is a biocompatible and biodegradable polymer that is attracting great interest as the promising materials for various applications is in medicine and, in particular, in tissue engineering. Here, we produced PCL nanofibers by electrospinning technique that allows one to obtain the nanofiber structure similar to that of extracellular matrix. The PCL scaffolds can be used as bone fillers and skin bandages. To improve bioactivity and to endow the PCL nanofibers with antibacterial properties, the material was first coated with multifunctional bioactive nanostructured films and then implanted with Ag ions. To select Ag ion energy, SRIM (The Stopping and Range of Ions in Matter) calculations were carried out. Microstructure and phase composition of modified fibers were studied by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The adhesion and proliferation of the MC3T3-E1 cells cultivated on the surface of TiCaPCONcoated PCL nanofibers were significantly improved in comparison with the uncoated nanofibers. The antimicrobial effect of the Aq-doped samples was evaluated against clinically isolated Escherichia coli U20 (E. coli), Staphylococcus aureus 839 (S. aureus) bacteria

and different strains of Neurospora crassa (N. crassa) Wt987, Nit-6 and Nit 20. In all cases surface Ag-doped nanofibers had strong antibacterial effect, however Ag ions didn't release from the scaffold that means they don't be accumulated in the liver. Inductively coupled plasma mass spectrometry (ICP-MS) which was utilized to determine the amount of Ag ions leached from the scaffolds indicated less than 5 ppb/cm² released Ag ions for 7 days.

Biography

Permyakova Elizaveta is a PhD student of Material Technology in National University of Science and Technolgy "MISiS". The main topic of her research is related to the deposition of bioactive multicomponent thin films, immobilization of biomolecules and surface analysis. Her work is absolutely essential for the development of novel bioactive materials used in regenerative medicine. Permyakova has already published eleven articles indexed in Scopus and she is first author of four articles. Permyakova has demonstrated very good expertise in biochemistry, cell biology and material characterization.

permyakova.elizaveta@gmail.com