

May 10-11, 2018 Frankfurt, Germany JOINT EVENT

22nd Edition of International Conference on

Immunology and Evolution of Infectious Diseases

12th Edition of International Conference on

Tissue Engineering and Regenerative Medicine

Mina Tadjalli et al., J Transm Dis Immun 2018, Volume 2 DOI: 10.21767/2573-0320-C2-006

EFFECT OF LAMININ ON NEUROTROPHIC FACTORS EXPRESSION IN SCHWANN-LIKE CELLS INDUCED FROM HUMAN ADIPOSE-DERIVED STEM CELLS IN VITRO

Mina Tadjalli¹, Giti Zarinfard¹ and Shahnaz Razavi²

¹School of Veterinary Medicine, Shiraz University, Iran ²School of Medicine, Isfahan University of Medical Sciences, Iran

he Schwann-like cells can be considered as promising in stem cell therapies, at least in experimental models. Human adipose-derived stem cells (ADSCs) are induced into Schwannlike cells (SC-like cells) and are cultured on either a plastic surface or laminin-coated plates. The findings here reveal that laminin is a critical component in extracellular matrix (ECM) of SC-like cells at in vitro. The survival rate of SC-like cells on a laminin matrix are measured through MTT assay and it is found that this rate is significantly higher than that of the cells grown on a plastic surface (P < 0.05). Schwann cell markers and the myelinogenic ability of SC-like cells at the presence versus absence of laminin are assessed through immunocytochemistry. The analysis of GFAP/S100β and S100β/MBP markers indicate that laminin can increase the differentiated rate and myelinogenic potential of SC-like cells. The expression levels of SCs markers, myelin basic proteins (MBP), and neurotrophic factors in two conditions are analyzed by real-time reverse transcription polymerase chain reaction(RT-PCR). The findings here demonstrated that gene expression of SCs markers, MBP, and brain-derived neurotrophic factors (BDNF) increase significantly on laminin compared to plastic surface (P < 0.01). In contrast, the nerve growth factor(NGF) expression is down regulated significantly on laminin-coated plates (P < 0.05). The obtained data suggest that production of neurotrophic factors in SC-like cell in presence of laminin can induce appropriate microenvironment for nerve repair in neurodegenerative diseases.

Biography

Dr. Tadjalli is a professor of Histology and Zarinfard is a graduate student at the department of Histology School of Veterinary Medicine, Shiraz University, Shiraz and Dr. Razavi is a professor of Histology Isfahan University of Medical Science, Isfahan, Iran. Her research interest includes Histology, stem cell, regeneration.

mtadjalli6@yahoo.com