

MANAGEMENT OF *H. PYLORI* GASTRIC INFECTION VIA SURFACE-GRAFTED ANTIMICROBIAL PEPTIDES

Paula Parreira^{1,2}, Claudia Monteiro^{1,2}, Vanessa Graça², Joana Gomes^{1,3}, Sílvia Maia⁴, Paula Gomes⁴, Inês C Gonçalves^{1,2,5} and M Cristina L Martins^{1,2,6}

¹i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

²INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Portugal

³IPATIMUP, Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Portugal

⁴LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal

⁵FEUP, Faculdade de Engenharia, Universidade do Porto, Portugal

⁶Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal

Helicobacter pylori chronic infection is associated, among other severe gastric disorders, with intestinal-type gastric carcinogenesis, being this the fifth most common cancer and the third leading cause of cancer-related death worldwide. Classical *H. pylori* eradication treatment, combining two antibiotics and a proton pump inhibitor, reduces the risk for gastric carcinoma development, but treatment of *H. pylori* infection is challenged by a dramatic fall in eradication rates all over the world. Currently, this bacterium is listed among the 16 antibiotic-resistant bacteria that pose greatest threat to human health according to the World Health Organization. Antimicrobial peptides (AMPs) present an alternative to conventional antibiotic therapies, being their most striking feature the low tendency to induce bacterial resistance, since AMPs selectively damage the bacterial membranes through mechanisms that bacteria find difficult to evade. In an *in vivo* scenario, “unbound AMPs” can undergo proteolysis and peptide aggregation, leading to efficiency decrease. AMP grafting onto nanoparticles has been reported as a good strategy to protect peptides from aggregation and enzymatic degradation *in vivo*, therefore increasing long-term stability and avoiding cytotoxicity is associated with application of high AMP concentrations. In this study, we demonstrated that the AMP MSI-78A could be surface-grafted without compromising its activity. Moreover, MSI-78A-decorated surfaces were highly effective against *H. pylori*, killing bacteria by contact in a short time span, since after 2 hrs only, 2% of *H. pylori* remained viable in suspension. These results encourage the utilization of grafted MSI-78A on biocompatible nanoparticles as an alternative to the currently available therapy against *H. pylori*, opening new routes for gastric infection management.

parreira@i3s.up.pt