

Annual Congress on Medicinal Chemistry, Pharmacology and toxicology

July 30-31, 2018 Amsterdam, Netherlands

> J Org Inorg Chem 2018, Volume 4 DOI: 10.21767/2472-1123-C3-009

EASY SYNTHESIS AND FUNCTIONALIZATION OF SMALL UP-CONVERTING NANOPARTICLES TOWARDS ADVANCED BIOMEDICAL APPLICATIONS

Guzzetta F^{1, 2}, Julian-Lopez B^{1, 2} and Roig Serra A³

¹Universitat Jaume, I Spain ²INAM-Universitat Jaume, I Spain ³ICMAB-Universidad Autónoma de Barcelona, Spain

The last decade has seen a rapid increase of biomedical science discoveries, thanks, also to a stricter wedding between bio-compatible molecules and bright, luminescent inorganic nanoparticles, which have open new fields in theranostics (combined photodynamic therapy and bio-labelling). Up-converting (UC) nanomaterials are able to convert low-energy excitation (NIR) into high-energy emission (visible) and their application in biomedicine has been on the edge for the last 15 years, thanks to advantageous features such as low photo-bleaching, low-energy excitation (NIR), which accounts for low background fluorescence and higher penetration depth. The biggest challenge that the scientific community faces for their commercialization is to synthesize bright-emitting, phase-consistent and small-sized nanocrystals with easily scalable procedures. To date, Er^{3+} -Yb³⁺ co-doped β -NaYF4 is the most efficient UC material known. A key issue for its industrial scalability is to avoid extreme reaction conditions (around 350°C, inert atmosphere, etc.) employed in the most widely spread laboratory procedures. Recently, microwave routes for the preparation of efficient UC nano- β -NaYF4 materials have been explored; however, only cubic (α -NaYF4) or mixed phase (α + β) crystals were reported, leading to low efficient UC quantum yields. We report the formation of uniform-sized 15x60 nm lanthanide-doped β -NaYF4 up-converting nanoparticles, under an easy and quick route that exploits homogeneous microwave heating. It permits bright emissions, easy post-synthesis functionalization and ease of scalability. Wavelengths modulation can be assessed through the incorporation of different actuators (Tb, Er, Tm). This discovery permits not only exploitation of the targeted bio-functionalization of the nanorods, but also the manufacture of small, portable biomedical devices.

guzzetta@uji.es