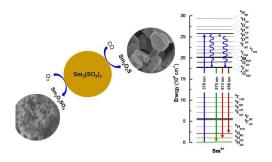


2nd Edition of EuroSciCon Conference on

Chemistry

February 19-20, 2019 Prague, Czech Republic


J Org Inorg Chem 2019, Volume: 5 DOI: 10.21767/2472-1123-C1-021

REDDISH ORANGE LIGHT EMITTING AND THERMAL STABILITY OF THE SM₂O₂S/SM₂O₂SO₄ PHOSPHORS Rodrigo V Rodriguesa³, L U Khan², E J B Muri³, J R Matos¹ and A A L Marins³

¹Institute of Chemistry-University of São Paulo, Brazil ²Brazilian Nanotechnology National Laboratory (LNNano), Brazil ³Federal University of Espirito Santo, Brazil

A spectroscopy study of Sm³⁺ phosphors was performed through photoluminescence spectra measurements. The phosphors were prepared from the thermal decomposition of hydrated samarium sulfate to obtain samarium oxysulfide (Sm₂O₂S) and oxysulfate (Sm₂O₂SO₄). Reddish-orange color emission was monitored from that of oxysulfide phosphor under ultraviolet (UV) excitation at $6H_{5/2}$ ->4I_{13/2} (466 nm) and the photoluminescence emission properties were characterized. The Sm³⁺ oxysulfide/ oxysulfate phosphors can be efficiently excited by UV and blue light, and their emission spectrum consists of three important narrow lines: $4G_{5/2}$ -> $6H_{5/2}$ (575 nm), $4G_{5/2}$ -> $6H_{7/2}$ (613 nm), and $4G_{5/2}$ -> $6H_{9/2}$ (658 nm) intraconfigurational transitions respectively. The final thermal stability of oxysulfide/oxysulfate phosphors was investigated systematically by TG/DTG measures. Based on the results, the as prepared Sm₂O₂S/Sm₂O₂SO₄ materials are promising reddish-orange-emitting phosphors for UV based white light-emitting diodes.

rodv16429@hotmail.com

