

2nd Edition of EuroSciCon Conference on

Chemistry

February 19-20, 2019 Prague, Czech Republic

J Org Inorg Chem 2019, Volume: 5 DOI: 10.21767/2472-1123-C1-021

CANDLELIGHTSTYLE ORGANIC LIGHT-EMITTING DIODE ENABLING BLUE HAZARD FREE LIGHTING

Jwo Huei Jou and Meenu Singh

National Tsing Hua University, Hsinchu Taiwan

ntense white light consisting of blue or violet emission might cause damage to human eyes, suppress melatonin-secretion, disrupt circadian rhythm and ecosystems, discolour artifacts, and pollute the night skies. Developing a blue hazard free lighting with high lightquality and energysaving character is highly demanding and challenging. So far, organic light-emitting diodes (OLEDs) have proven to be a great lighting measure that is friendly to human, environments and ecologies with energy-efficient and high-quality character besides being mercuryfree and having extremely high spectrum tailoring capability. In this study, the developed candlelight-style OLED consisting of multiple blackbody-radiation complementary organic emitters, namely skyblue, green, yellow, and deep-red and provide a very-high spectrum resemblance index with respect to natural light, i.e. >90. Specifically, the resultant OLED showed a low colour temperature (<1,900 K), whose melatonin suppression sensitivity is only 3% relative to that of a 480 nm blue light. Its maximum retina permissible exposure limit is 3,454 seconds at 100 lx, 11, 10 and 6 times longer and safer than the counterparts of a compact fluorescent lamp (5,920 K), light emitting diode (5,500 K) and OLED (5,000 K). Additionally, its high device efficacy and long operation lifetime enable commercialization feasibility. The fabricated candlelight-style OLED can be an ideal lighting measure for indoor as well as outdoor illumination purpose due to its friendly nature to human and ecosystems.

jjou@mx.nthu.edu.tw