

April 26-27, 2018 Rome, Italy

Nano Res Appl, Volume:4 DOI: 10.21767/2471-9838-C1-009 17th Edition of International Conference on

Emerging Trends in Materials Science and Nanotechnology

DESIGN AND DEVELOP HIGH PERFORMANCE LIFEPO4/C NANOCOMPOSITES As cathode materials for rechargeable lithium ion batteries by cation exchange process

Zongtao Zhang, Runwei Wang and Shilun Qiu

Jilin University, China

Nanomaterials, so often reported by claims of delivering multifarious properties, have the genuine potential to make a significant impact on the performance of advanced energy storage and conversion devices (e.g. batteries, super capacitors, fuel cells and solar cells), especially in the high-power aspect, as the reduced dimensions enable far more accessible active surfaces as well as enhanced diffusion dynamics. Herein, we present our detailed work on a novel lithiation of amorphous hydrated FePO₄, typically FePO₄-PANI (polyaniline) composite, by a facile H⁺/Li⁺ ion exchange that was attentively deduced and studied with the help of several relevant chemical/physical analytical techniques. The resultant Li-derivative is proved to be a suitable precursor for

yielding LiFePO₄/C nanocomposite with ideal structural features containing highly crystalline LiFePO₄ nanoparticles completely coated with N-doped conductive carbon. More importantly, the LiFePO₄/C nanocomposite is capable of offering outstanding electrochemical performances for lithium-ion batteries in terms of high rate capability (~80.3 mAh g-1 at 100) and long-term cyclability (less than 3% discharge capacity loss over 600 cycles at 10) that were strongly supported by the results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests.

zzhang@jlu.edu.cn sqiu@jlu.edu.cn