2nd International Conference on

APPLIED CRYSTALLOGRAPHY

October 16-17, 2017 | Chicago, USA

Structural insights into Crenezumab's mechanism of action

Weiru Wang Genentech, USA

Crenezumab is a fully humanized immunoglobulin isotype G4 (IgG4) monoclonal antibody that binds to monomeric as well as aggregated A β forms (oligomers, fibers and plaques). Notably, crenezumab binds with higher affinity to A β oligomers over monomers and *in vitro* studies have demonstrated crenezumab's ability to block A β aggregation and promote A β disaggregation. To understand the structural basis for this activity and crenezumab's broad binding profile, we determined the crystal structure of crenezumab in complex with A β . The structure reveals a sequential epitope and the conformational requirements for epitope recognition, which include a subtle but critical element that is likely the basis for crenezumab's versatile binding profile. We find interactions consistent with high affinity for multiple forms of A β , particularly oligomers. Crenezumab also sequesters the hydrophobic core of A β and breaks an essential salt-bridge characteristic of the β -hairpin conformation, eliminating features characteristic of the basic organization in A β oligomers and fibrils, and explains crenezumab's inhibition of aggregation and promotion of disaggregation. These insights highlight crenezumab's unique mechanism of action, particularly regarding A β oligomers and provide a strong rationale for the evaluation of crenezumab as a potential treatment for patients with Alzheimer's disease.

Biography

Weiru Wang has completed his PhD in Biophysics from Cornell University and Post-doctoral studies from University of California, Berkeley. He is currently a Senior Scientist and a Group Leader in the Structural Biology Department at Genentech, a member of the Roche Group. His research focuses on understanding of molecular basis of protein-drug interactions using biophysical methods, primarily macromolecular crystallography.

wang.weiru@gene.com

Notes: