

7th Edition of International Conference on

Pharmacognosy and Medicinal Plants

March 11-12, 2019 London, UK

Ogechukwu L. Nwankwo et al., Am J Ethnomed 2019, Volume 6 DOI: 10.21767/2348-9502-C1-009

Antimicrobial and antimalarial properties of secondary metabolites of an endophytic fungus isolated from *Azadirachta indica (meliaceae)*

Ogechukwu L. Nwankwo¹, Felix A. Onyegbule² and Festus B. C. Okoye²

¹Faculty of Pharmaceutical Sciences, Chukwuemeka Odumegwu Ojukwu University, Igbariam, Anambra State, Nigeria

²Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Background information: Natural products of endophytic fungi have generated significant interest in drug discovery programmes due to their immense potential to contribute to the discovery of new biologically active molecules.

Purpose: This study was carried out to investigate the antimicrobial and antimalarial properties of secondary metabolites of an endophytic fungus isolated from leaves of A. indica.

Method: Endophytic fungal isolation, solid sate fermentation in rice medium; and extraction of secondary metabolites were carried out using standard methods. The fungal extract was screened for antimicrobial and antimalarial activities using the agar well diffusion method and Peters' 4-day suppressive test respectively. The extract was also subjected to HPLC analysis to identify its constituents. **Results:** At 1 mg/mL, the fungal extract inhibited the growth of Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli and Candida albicans with inhibition zone diameters of 6, 4, 5, and 4 mm respectively. Also, at doses of 150 and 50 mg/kg/day, the extract displayed a dose dependent suppression of Plasmodium berghei by 89 and 83% respectively. HPLC analysis of the extract revealed the presence of several biologically important compounds including protocatechuic acid, ruspolinone, dimethyl gallate, indole-3-carbaldehyde, 4-methoxy benzaldehyde, 2-carboxymethyl-3-n-hexylmaleic acid anhydride, pestalotioprolide F and p-hydroxy-phenylacetic acid.

Conclusion: The results of this study reveal the potentials possessed by endophytic fungi of A. indica as sources of biologically active compounds with pharmaceutical importance.