Biomolecular Spectroscopy and Dynamics of Nano–Sized Molecules and Clusters as Cross–Linking–Induced Anti–Cancer and Immune–Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload–Based Perspective

Alireza Heidari*

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

*Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University (CSU), 14731 Comet St. Irvine, CA 92604, USA Tel: 1-775-410-4974; E-mail: Scholar.Researcher.Scientist@gmail.com

Received Date: May 22, 2017; Accepted Date: May 23, 2017; Published Date: May 30, 2017

Copyright: © 2017 Heidari A, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Editorial

Chemists have been fascinated for a long time with phenomenon of biomolecular spectroscopy and dynamics of Nano–sized molecules and clusters as cross–linking–induced anti–cancer and Immune–Oncology (I-O) Nano drugs delivery in DNA/RNA of human cancer cells’ membranes under synchrotron radiations [1–25]. This concept generally associated with anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations, now extends equally well to synchrotron chemistry. Despite its continuing very frequent use in the scientific literature, anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations like many other useful and popular chemical concepts is non–reductive and lacks an unambiguous basis. It has no precise quantitative definition and is not directly measurable experimentally. In other words, anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations is a virtual quantity, rather than a physical observable. Since anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations is not a directly measurable quantity, its magnitude is now generally evaluated in terms of structural, energetic and magnetic criteria. However, magnetic properties are the most closely related to anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations, as they depend directly on the induced ring currents associated with cyclic electron delocalization. The main purpose of this editorial is to show how the different criteria can be used to describe the Nano drugs delivery under synchrotron radiations of various Nano–sized molecules and clusters as cross–linking–induced anti–cancer and Immune–Oncology (I-O) Nano drugs in DNA/RNA of human cancer cells’ membranes.

On the other hand, functionalized cross–linking–induced anti–cancer and Immune–Oncology (I-O) Nano drugs delivery in DNA/RNA of human cancer cells’ membranes under synchrotron radiations are found in a variety of Nano–sized molecules and clusters using biomolecular spectroscopies such as ¹³C NMR, ³¹P NMR, Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR) and FT–Raman. Consequently, many synthetic methodologies have been developed for constructing these anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations, most of which were based on cycloaddition/elimination or condensation reactions. Since Michael reactions hydrophobic effects could strongly enhance the rate of some anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations reactions and rediscovered the use of water as solvent in synchrotron chemistry in 2010s. Anti–cancer and Immune–Oncology (I-O) Nano drugs delivery under synchrotron radiations reactions in water without using harmful organic solvents are one of the current focuses today specially in our environmentally vigilant societies. In this editorial, we wish to report a one–pot, three–component reaction of different Nano–sized molecules and clusters as cross–linking–induced anti–cancer and Immune–Oncology (I-O) Nano drugs delivery in DNA/RNA of human cancer cells’ membranes under synchrotron radiations in refluxing water.

References


