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Abstract
The effect of temperature on survival, growth, jaw
deformity, and point of no return (PNR) after food
deprivation in newly hatched yellowtail amberjack Seriola
lalandi dorsalis larvae were studied in experimental
conditions. The performance of fed and un-fed yellowtail
amberjack larvae were tested at 21, 23 and 25˚C for 24
days. In the fed treatment, fish survivals at 21 and 23˚C
were significantly higher than that at 25˚C by 24 day post
hatch (DPH). Fish length and dry weight at 25˚C were
significantly higher than those reared at 21 and 23˚C.
Temperature significantly affects the feeding incidence of
fish larvae from 3 DPH to 5 DPH. In the unfed treatment,
fish larvae reached PNR at 5, 6 and 8 DPH at 25, 23 and
21˚C, respectively. Higher temperatures increased fish
ontogenetic development, but decreased the time to reach
PNR. The high rate of jaw deformity occurred at high
temperature by 24 DPH. Our results indicate that rearing
temperature is a key factor affecting the ontogenetic
development of yellowtail amberjack larvae and the
optimum temperature for the first feeding larval is 21-23˚C.
Temperatures above 25˚C are likely to cause mortality of
yellowtail amberjack larvae in the first 10 DPH.
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Introduction
Temperature is important for development of fish larvae

because it can regulate metabolism and feeding behaviour [1,2].
Temperature directly influences the size of fish larvae at
hatching, yolk absorption, growth, survival, feeding success and
digestion [3-9]. In many cases, high mortality and abnormality of
fish larvae are attributed to unsuitable temperature in the
rearing system [10-13]. Within the temperature range of fish

tolerance, the increase of temperature accelerates ontogenetic
development, but a high temperature may reduce fish survival
rates at the same time [14]. During ontogenetic development,
the size at metamorphosis tends to increase at low temperature
[15,16]. In contrast, at high temperatures, yolk-sac absorption of
fish larvae is faster resulting in a shorter endogenous feeding
period [9,17,18]. Within the range of optimal temperatures,
food intake of fish usually increases with temperature
increment, but falls dramatically at the low end of optimal
temperatures [19]. Therefore, choosing appropriate
temperature for rearing fish larvae is essential to achieve fast
growth and high survival in finfish hatcheries.

In larval fish rearing, fish mortality in the early stage is closely
related to food supply under favourable conditions because fish
development depends on adequate nutrition uptake [20-23].
However, temperature can influence the duration of
endogenous feeding and the ability of fish larvae to tolerate
food deprivation because temperature directly regulates the
rate of yolk absorption [24,25]. After yolk sac is depleted, fish
larvae will rely on food from exogenous sources only. Therefore,
the time at first feeding in fish larvae is crucial for their growth
and survival.

Furthermore, when larvae are deprived of food after yolk-sac
absorption, some fish may permanently lose their ability to feed
from an external source [20,24]. Blaxter and Hempel [20] were
the first to define the term of point-of-no-return (PNR) for
herring as being 50% of larvae losing their ability of normal
feeding after a period of food deprivation. This definition is also
termed as “irreversible starvation” in larval fish biology [20].
During the onset of exogenous feeding, fish mortality is likely to
occur if the provision of first feeding is beyond the PNR [20]. For
this reason, it is necessary to examine the PNR at various
temperatures for a newly introduced fish species in aquaculture.

Jaw malformation is another factor not only causing low fish
survival but also reducing the market value of marine fish
species [26,27]. Jaw malformations have been reported to be
associated with poor nutrition [27-31] and environmental
factors [27,32-34]. Lein et al. [10] suggested that temperature
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can be a primary rearing condition influencing jaw development
because organ development and differentiation in fish are
temperature-dependent. At low temperature, significant
deformities of gill-cover and skeleton in gilt-head sea bream
Sparus aurata [35] and cranial deformities in European sea bass,
Dicentrarchus labrax [36] have been reported.

The yellowtail amberjack (Seriola lalandi dorsalis) belongs to
the Carangidae family and is widely distributed throughout
warm–temperate waters of the northern hemisphere. It has
been introduced as a new species for aquaculture due to its fast
growth, high flesh quality and suitability for cage culture for 20s.
However, low survival and unreliable fingerling quality have
greatly hindered the fingerling production of yellowtail
amberjack in China. Up to present, the impact of temperature
on survival and growth of yellowtail amberjack in the early stage
is not known for this species. It is unclear if temperature could
affect deformity in yellowtail amberjack, though jaw
malformation has been a serious problem in the larval rearing of
yellowtail kingfish [27,36], a Seriola lalandi subspecies
distributing in the Southern Hemisphere waters. It is therefore
necessary to examine the relationship between temperature
and jaw deformity during the early stage of larval fish rearing.
The objective of this study was to understand the impact of
temperatures on the ontogenetic development of yellowtail
amberjack. Specifically, we examined survival, growth and
development of fish larvae at different temperatures. We
further quantified the time required for fish larvae to reach the
point of no return after yolk absorption and jaw malformation at
different temperatures. The results of this study would provide
insights into the understanding of role of temperature in
regulating fish survival and the development of management
strategies to improve production efficiency in finfish hatcheries.

Materials and Methods

Ethical approval
In this study, the handle of fish was carried out in strict

accordance with the recommendation in the Animal Welfare of
Chinese Academy of Fishery Sciences Animal Welfare
Committee. The protocol, species and number of animals used
in this study were approved by the South China Sea Fisheries
Research Institute Animal Welfare Committee (Approved
Number: A201601A01).

Experimental design and larval fish rearing
Fertilized eggs were obtained from a local hatchery in Lingshui

Town, Hainan Province, China and transported to the Tropical
Aquaculture Research and Development Centre, South China
Sea Fisheries Research Institute, Chinese Academy of Fishery
Sciences. Upon arrival, all larvae hatched in 500 L fibreglass
incubators at 23.5˚C. The experimental design included three
temperatures 21, 23 and 25˚C with three replicates. A total of
nine tanks were used in the temperature experiment. After
hatching, the larvae were stocked into the 500 L fibreglass
rearing tanks at a density of 60 larvae/L per tank. All rearing
tanks were supplied with filtered seawater with a 6 µm filter in a

flow-through system at a daily water exchange rate of 300% tank
volume. Two air stones were used in each tank to maintain
dissolved oxygen at saturation and to homogenize the
distribution of microalgae, rotifers and Artemia nauplii. Light
intensity at 2400 lx and a photoperiod of 14 h light and 10 h dark
was used. Salinity was maintained at 36‰ throughout the
experiment.

Rotifers (Brachionus plicatilis) were fed to the 3 days post
hatching (DPH) larvae until 13 DPH at 10 rotifers/ml. The rotifers
fed with microalgae (Nannocholoropsis sp.) were enriched with
DHA Selco (INVE Aquaculture) for 12 h before adding into fish
rearing tanks. Instant microalgae (Nannocholoropsis sp.) were
also added into the larval rearing tanks as food for rotifers, and
to create a green background for fish larvae. Artemia nauplii
were enriched with DHA Selco (INVE Aquaculture) before they
were introduced into the larval rearing tanks from 9 to 24 DPH
at 5 Artemia/mL.

Fish sampling, growth and dry weight
measurements

Upon egg arrival, 50 eggs were randomly collected in
triplicate from the incubating tanks to measure the egg
diameters. The average egg diameter was 1.40 ± 0.03 mm
(n=50). Fish larvae were daily collected in triplicate from the
rearing tanks from hatching to 6 DPH. Subsequently, the
specimens were collected on 8, 11, 15, 19 and 24 DPH. Standard
length, feeding incidence, and yolk sac size were measured on
10 fish per tank under a dissecting microscope on each sampling
day. Ten fish from each tank were used to determine dry weight,
and the larvae were first washed with distilled water before
body weight analysis. Fish were dried in an oven at 60 ˚C for 48 h
to obtain dry weight.

Mortality rates were recorded daily by counting dead fish on
the bottom of each tank. Growth was determined by the
absolute growth rate (AGR) in mm/day and by the specific
growth rate (SGR) as %/day using the following equations [37].

AGR=(SLf–SLi)/Δt,

SGR=100 (LnSLf–LnSLi)/Δt,

Where SLf and SLi were the final and initial fish standard
length (mm), respectively, and Δt was the time between
sampling intervals. The volume of yolk sac (YSV, mm3) was
calculated using the formula for an ellipsoidal volume: YSV=π/6
× L × H2, where L was the major axis and H the minor axis of the
yolk sac [20]. The feeding incidences were calculated by the
following formula:

Feeding incidence=100 × N1/N0,

Where N0 is the number of fish larvae, and N1 is the number
of larvae with food in the gut [10].

Point of no return (PNR)
At each temperature, a total of 30,000 fish larvae were

deprived of food and kept in a 500 L tank. All other rearing
conditions were the same as those in the feeding experiment.
Starting from 6 h after yolk sac exhaustion, 20 starved larvae
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were daily taken from the unfed tank and transferred into a 4 L
beaker in triplicate to test the time required to reach the PNR.
Larvae were provided with rotifers stained with neutral red (10
µL/mL) for 30 min at a density of 20 rotifers/ml. The fish gut was
examined under a microscope after fish were feeding for 2 h.
The percentage of feeding larvae that had been deprived of food
for a given number of days was calculated in respect to the total
number of larvae tested. The PNR was defined as a threshold
time when 50% of the larvae were still alive but was unable to
eat, despite food availability [20].

Jaw deformity analysis
At the end of the temperature trial, 50 larvae were randomly

selected from each tank to examine jaw deformity. The jaw
malformation was scored using the method by Battaglene and
Cobcroft [32]. In brief, the “0” score stands for normal jaw; “0.5”
for very minor malformation; “1” stands for minor
malformation; “2” for moderate malformation; and “3” for
severe malformation.

Statistical analysis
All data were expressed as mean ± SD, and tested using one-

way ANOVA (PASW Statistics 18.0). When a significant treatment
effect was found, Tukey’s test was performed for multiple range
comparisons (P<0.05). The relationship between standard length
(SL) and dry weight (DW) were calculated by the power
regression DW=a × SLb (PASW Statistics 18.0). Values of the
exponent b provide information on fish growth. When b=3, the
increase in weight was isometric. When the value of b was >3,
the weight increase was allometric (positive if b>3, negative if
b<3) [38].

Results

Fish survival, growth, feeding and yolk depletion
Fish survival was significantly affected by temperature

(P<0.05, Figure 1A). The final survival of fish larvae decreased
with the increasing of temperature (Figure 1) and the decreasing
of survival followed a linear regression of y= –7.9428x + 29.719
(r2=0.9989, Figure 1A). At the end of this experiment, the
highest survival was observed in fish reared at 21˚C and lowest
survival was observed at 25˚C (P<0.05). Temperature
significantly affected the growth of yellowtail amberjack larvae
(P<0.05, Figure 1B-1D). Fish length increased from 4.18 ± 0.06
mm at hatching (0 DPH) to 8.3 ± 0.5 mm at 21˚C, 9.8 ± 0.4 mm at
23˚C, and 13.8 ± 1.9 mm at 25˚C by 24 DPH, respectively. But
before 11 DPH, no differences were observed between
temperature treatments (P>0.05, Figure 1B). On 15 DPH, the
standard length of fish at 25˚C was significantly higher than at
other temperatures (P<0.05). On 24 DPH, fish at 25˚C were still
bigger than those at 21˚C and 23˚C (P<0.05) and fish at 23˚C
were larger than those cultured at 21˚C environment (P<0.05).
The absolute and specific growth rates of yellowtail amberjack
were significantly affected by rearing temperature (P<0.05).
Within the rearing temperature of 21-25˚C, the increment of
temperature increased both absolute and specific growth rates

of fish larvae (Figure 1C and 1D). Larvae in the 25˚C treatment
exhibited the highest absolute (0.38 ± 0.07 mm/day) and specific
growth rate (4.8 ± 0.60%/day). Furthermore, the absolute and
specific growth rates of larvae at 25˚C were almost two folds
greater than the larvae at 21˚C.

Figure 1 Final survival (A), standard length (B), absolute
growth rate (C), and specific growth rate (D) of yellowtail
amberjack larvae cultured at 21˚C (    ), 23˚C (   ) and
25˚C (   ). Mean ± SD (n=3) with different superscript letter 
is significantly different in multiple comparisons (P<0.05).

In this study, the standard length (x) and dry weight (y)
relationships of yellowtail amberjack larvae were quantified by
the regression equation of y=a × xb. The length-weight
relationships of fish culture at 21, 23 and 25 ˚C can be expressed
at y21=6E-05 × 4.78 (r2=0.96), y23=4E-05 × 5.02 (r2=0.95) and
y25=6E-05 × 4.79 (r2=0.98), respectively (Figure 2). The b values
were 4.78–5.02, where a ranged from 4.0 × 10-5 to 6.0 × 10-5.
The maximum b was observed at 23˚C.

The volume of yolk sac in yellowtail amberjack larvae was
0.49 ± 0.09 mm3 at 8 h after hatch and decreased to 0.009 ±
0.00 mm3 at 80 h after hatch. Yolk-sac depletion was not
significantly affected by the rearing temperatures (P>0.05,
Figure 3A) and a rapid depletion was found between 8 h and 18
h. Feeding incidences of fish larvae were significantly affected by
the rearing temperature from 2 DPH to 5 DPH (P>0.05, Figure
3B). The feeding incidence of fish larvae in 21˚C group was
significantly lower than those observed in 23 and 25˚C (P<0.05)
between 3 DPH and 5 DPH. Starting from 6 DPH, the feeding
incidences of fish larvae were not significantly affected by the
rearing temperature (P>0.05).

The time for fish larvae to reach the PNR depended on the
rearing temperatures (Figure 3D). The PNR at 25, 23 and 21˚C
occurred on 5, 6 and 8 DPH, respectively. The average of feeding
incidences at 21, 23 and 25˚C was 4.46 ± 1.88% in starved fish
and no significant differences were found between these
treatments (P>0.05). On 5 DPH, feeding incidence in fish at 25˚C
was significantly higher than that at 21˚C (P<0.05). The peaks of
feeding incidence at 21 and 23˚C occurred on 6 and 5 DPH,
respectively.
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Figure 2 The relationship between standard length and dry
weight of yellowtail amberjack larvae cultured at 21, 23 and
25˚C (n=36). A total of 1080 fish larvae were measured in this
study.

Figure 3 Yolk-sac volume (A), feeding incidence (B), oil globe
diameter (C) and point of no return (C) of yellowtail
amberjack larvae cultured at 21˚C (   ), 23˚C (   ) and
25˚C (   ). Mean ± SD (n=3) with different superscript letter 
is significantly different in multiple comparisons (P<0.05).

Jaw deformities
Temperature significantly affected the jaw malformation of

yellowtail amberjack larvae (Figure 4). In this study, category 0.5
jaw malformations were 15.06%, 50.33% and 33.31% in 21, 23
and 25˚C, respectively (Figure 4). In 25˚C group, significantly

higher category 1, 2 and 3 malformations were observed. In
calculating the final malformation percentage, we excluded
category 0.5, as most of malformations in this category was
minor which cannot significantly affect fish feeding. Jaw
malformation of fish larvae increased with the increasing of
rearing temperature. By the end of this experiment, the highest
jaw malformation was observed in 25˚C group, and the lowest
jaw malformation was recorded in the 21˚C rearing group
(P<0.05).

Figure 4 Jaw malformation category and jaw malformation
rate of yellowtail amberjack larvae cultured at 21˚C (   ), 23˚C
(   ) and 25˚C (   ). Mean ± SD (n=3) with different superscript
letter is significantly different in multiple comparisons
(P<0.05). A total of 450 fish larvae were examined for jaw
malformations.

Discussion
Previous studies suggest that the temperature range of

17-24˚C suits larvae of most temperate fish species [39-41].
Moran [42] reported that 18-24˚C should be suitable for egg
incubation and the first feeding yellowtail kingfish larvae. This
present study scrutinised the influence of temperature on
ontogeny of yellowtail amberjack during early life. Water
temperature significantly affected growth, survival and jaw
deformities of yellowtail amberjack larvae. Importantly, rearing
temperature not only affected the time of yolk sac depletion,
but also changed the window for the period when the initial
feeding should start for the first feeding larvae.

Increasingly more evidence indicates that high fish mortality is
associated with food availability when fish start first feeding
[43-48]. Previous studies indicate that PNR is closely related to
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temperature, as low temperature extends the time for larvae to
reach the PNR and high temperature shows the opposite
[18,20,49]. In the present study, a similar trend was observed
where high temperature shortened the time for PNR. Dou et al.
[18] suggested that the insufficient time for the first feeding
larvae to learn to take food before the onset of irreversible
starvation (PNR) might be the potential cause for the mortality.
Since higher temperature reduced the time for PNR, larvae of
yellowtail amberjack have less time to find their feeding
capability. This may explain why massive mortality rates occur
earlier under higher temperature in the present study.

The effects of temperature on fish growth, food intake and
metabolic activity are usually concurrent [50]. In the present
study, the growth of newly hatched amberjack was not
temperature dependent in their first 12 days of life. However,
fish growth was visibly affected by temperatures after 15 DPH,
and growth was accelerated when temperature elevated from
21 to 25˚C. Previous studies have demonstrated that higher
temperature can lead to increasing of metabolism, feeding and
food assimilation in fish larvae such as Australian snapper Pagrus
auratus [8], striped trumpeter Latris lineata [51], brown sole
Pseudopleuronectes herzensteini [15], Atlantic halibut
Hippoglossus hippoglossus [10] and yellowtail kingfish Serilola
lalandi lalandi [41]. In yellowtail amberjack, the positive
relationship between temperature and growth may be
attributed to the improved digestive function of larvae after 15
DPH as Chen et al. [52] reported that the goblet cells and gastric
glands present in the gut of yellowtail kingfish larvae after 15
DPH. However, this need further verify in this species.

The impact of temperature on fish growth could be detected
from the length – weight regression equation that is to evaluate
the impact of environmental variables on growth [53]. In the
regression equation of length-weight relationship, the exponent
b is a measure of relative logarithmic growth rates between
length and weight, and the b value represents the increments of
weight over length in the same period [54]. The range of b
values for marine fish larvae in previous studies was 2.7 to 4.5
[53,55]. In the present result, the b value was 4.78 at 21˚C, 5.02
at 23˚C and 4.79 at 25˚C, suggesting that weight gain of larvae at
21, 23 and 25˚C is faster than other fish species.

The size of the yolk sac volume decreases as fish grow [10]. In
the present study, yolk depletion was rapid from 8 to 18 h and
the time of yolk sac exhaustion was 56-80 h after hatching.
Despite temperature differences, the rate of yolk decline in
yellowtail amberjack was not different between treatments.
These results were similar to our previous studies on Seriola
lalandi lalandi (unpublished data). Similarly, the rate of yolk
utilization haddock was not temperature dependent in the
temperature range tested [56].

Ambient water temperature can be a significant factor
influencing the success of initial feeding in fish larvae [57]. Brett
[5] suggested that the amount of food intake is concomitant
with the temperature increase and peaks before reaching the
supra-optimal temperature. In the present study, the feeding
incidence was significantly affected by temperature in the first
five days after hatching. A higher feeding incidence was
observed in 23˚C and 25˚C group suggesting these two

temperatures may stimulate the feeding of fish larvae in their
early life.

Temperature is a key factor determining the tolerance of food
deprivation in fish larvae since it directly affects fish metabolism,
yolk absorption, feeding activity and food conversion efficiency
[24,25,41]. Evidence indicates that mortality was strongly
temperature-dependent in the larvae and juveniles of the Asian
catfish, Pangasianodon hypophthalmus [58]. Similarly, high
temperature caused poor digestion and high mortality in
Japanese flounder larvae Paralichthys olivaceus [18]. In the
present study, temperature increment lead to low fish survival
especially in the first 10 days after hatching, though mortality
was relative stable after 10 DPH. Similar mortality patterns were
also found in striped trumpeter Latris lineata as its massive
mortality occurred during the initial feeding period [59].

Jaw malformation is a major concern in fish culture because it
affects fingerling quality for further growout [36,60,61]. Extreme
temperatures and salinities can contribute to jaw malformation
[62-64]. In the present study, the rate of jaw malformation in
fish larvae increased with temperature rise. This result supports
the early finding that jaw malformations are associated with
environmental temperature [10,65] and increasing of rearing
temperature could lead to high deformity in fish larvae [64]. It
has been suggested that temperature can indirectly affect larval
ontogeny by alteration of nutritional requirement of fish at
different temperatures [66]. The increased fish metabolism at
high temperature will lead to a high demand of energy and
nutrition supply [67] and interrupt the balance between nutrient
requirement and food intake leading to larval malnutrition
[29,68,69]. These could explain the appearance of high jaw
deformity rate at higher rearing temperature, though the
mechanism warrants further exploration.

Conclusion
The present study demonstrated that temperature affected

ontogenetic development of yellowtail amberjack larvae. At
25˚C fish larvae had lower survival but higher growth rate,
suggesting that this temperature is not suitable for early larval
rearing. The optimum temperature for amberjack larvae should
be 21-23˚C since fish showed higher survival and low jaw
deformity at this range. Consequently, we recommend that it is
potential to use lower temperature in fish early development
stage and a comparatively higher temperature in a later stage to
achieve better production yield. The timing of temperature
changes, however, requires further investigation.
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