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Abstract
An approach based on the industrial robots offers new ideas for the manufacture 
of blade-like complex components. Compared with the multi-axis CNC machine 
tools, robots are attractive due to their large extendable workspace and 
competitive price that makes them a cost-effective solution for machining of 
complex components, especially for large dimension parts. Particularly equipped 
with the powerful sensing functions, such as machine vision, force-sensing, the 
robotic machining operations can optimize the running parameters in real-time 
based on the process knowledge model and multi-sensor feedback information. 
In this presentation, the focus is visually-guided robotic machining of complex 
components. Specially, the previous investigation on robotic belt grinding of 
turbine blade from the perspective of measurement is analyzed and discussed.
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Background
The role of industrial robots is changing from manipulators to 
skillful machining robots (Figure 1).

The most important characteristic of Robotic Machining is 
Integration of Measurement-Machining-Manipulating (3 M) 
(Figure 2).

Methodology
Challenges of robotic machining
The key problem in robotic machining is how to control of the 
dynamical Robot-Processing Interaction behaviors. It concerns 
kinematic modeling, dynamic modeling, on-site measurement, 
and control of the machining process [1] (Figure 3).

Figure 1: Robotic machining.

Figure 2: Characteristic of robotic machining.



2020

© Under License of Creative Commons Attribution 3.0 License 2

American Journal of Computer 
Science and Information Technology Vol.8 No.3:58

In the application of robot grinding, there are several hardware/
software systems, such as robot basis/end systems (used to 
generate spatial operation), tool system (used to grind the work 
piece), laser scanner system (used to scanning the work piece 
and localize the work piece with suitable allowance), and design 
model system (used to programme the grinding path). It is a 
challenge task to calibrate them in a fast, accurate and economic 
manner. Specially, the hand (robot) eye (scanner) calibration 
and shape matching [2] (between measured points and the CAD 
model) is two important tasks, directly determining the final 
shape accuracy of blade grinding (Figure 4).

During on-site scanning measurement, the data scale is large 
(such as 10 thousands/million), and there usually exists uneven 
density data/noise data/missing regions due to the complexity of 
blade [3]. In addition, the initial pose of the objects required to 
be matched is arbitrary. The measured points are represented in 
scanning coordinate system, and the design model is represented 
in design coordinate system [4]. Consider the concave-convex 
characteristic, the suction surface and pressure surface of blade 
should be set as different grinding allowances, for obtaining 
a relatively stable grinding force. How to implement accurate 
shape matching and provide suitable grinding allowances under 
measuring defects is a challenging task [5] (Figure 5).

In recent years, some research institutions have begun to study 
the robot inspection technique or optical inspection technique. 
After the blade is scanned, one important task is to calculate 
the inspection parameters (such as mean line/maximum gauge/
tortuosity). Of course, during on-site inspection by the worker, 
the integration of sensor-algorithm-software is quite required, in 
order to save time/cost and improve automation operation [6] 
(Figure 6).

Measurement
In grinding application, usually a laser tracker is used to calibrate 
the 24 joint parameters of robot. However, buying a laser tracker 
is expensive (about 2 million RMB), and it is hard to transport 
and operate since the laser tracker is very heavy. In our method, 
a mathematical model of 30 calibration parameters (24 joint 
parameters and 6 pose parameters) is built and solved, for fast 
obtaining the pose calibration from hand system {E} to scanner 
system {S}. In the model, part 1 denotes the rigid frame from 
basis system {B} to scanner system {S}, and part 2 denotes the 
moving joint frame from the basis system {B} to the system {E}. 
The main advantage of the proposed method is that it is simple 
and economic since just a standard sphere is used to implement 
the calibration process [7] (Figure 7).

Figure 3: Challenges of robot processing interaction. Figure 5: Challenges of visually guided process.

Figure 6: Challenges of robotic optical inspection.

Figure 4: Challenges of robotic machining of multi-coordinate system.
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Due to the surface complexity and clamping uncertainty, the 
Traditional Matching Algorithm (ICP) may be trapped into a wrong 
local optimal value. It leads to large allowance region (causing 
high grinding force and vibration) and small/no allowance region 
(causing empty grinding). To address this problem, an Adaptive 
Distance Function (ADF) is defined as a new metric to guarantee 
convergent speed and stability during matching. The basic 
novelty is that the ADF use normal distance and partial tangential 
distance to construct the objective function of shape matching, in 
order to balance the convergent speed and convergent stability 
[8] (Figure 8).

To address this problem, an Adaptive Distance Function (ADF) 
is defined as a new metric to guarantee convergent speed and 
stability during matching. The basic novelty is that the ADF use 
normal distance and partial tangential distance to construct the 
objective function of shape matching, in order to balance the 
convergent speed and convergent stability [9].

Results
Traditional methods (ICP/TDM) are based on squared distance 
minimization, there are 3 disadvantages; 1) The point cloud 
is matched with the design model under minimized distance 
deviation, regardless of different allowance requirements for 

suction surface and pressure surface; 2) The matching result is 
prone to just meet with high density regions, since the measured 
points in these regions play a leading roles; 3) The squared 
operation accelerates this wrong tendency [10].

Note that the variance describes the deviation degree between 
every sample value and its mean value. By subtracting the mean 
value of distance deviation di, the variance minimization can 
balance the contributions of all measured points when iteratively 
matched with the design model, and weaken the influence of 
square operation for high density points. Stable matching with 
required grinding allowances is obtained (Figure 9).

To address the problem of large-scale data from laser scanning, 
we propose a curvature-adaptivity simplification method for 
blade features, where the space division and octree encoding are 
used. After simplification, this method can fine keep the blade 
high-curvature features such as leading/trailing edges, rabbet 
and lug boss [11] (Figure 10).

Due to the scanning uncertainty, there usually exists Gaussian 
noise in point cloud, and the fairing implementation is a double-
edged sword. The integral volume of the point cloud will be 
compressed after fairing. If efficient fairing is carried out, the 

Figure 7: Online hand eye calibration.

Figure 9: Three dimensional shapes matching variance minimization 
shape matching.

Figure 10: Large scale data simplification.

Figure 8: Three dimensional shape matching adaptive distance function.
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noise is smoothed but required features remains; otherwise, 
some vital features disappear [12]. 

Therefore, we defined the density entropy of point cloud, used 
to calculate fairing factor and preserving factor (for alpha) in 
each fairing step. This will better preserve blade’s high-curvature 
features such as leading/trailing edges, meanwhile fairing the 
point cloud (Figure 11).

According to the scanned discrete point cloud of blade, we 
systematically investigates the calculation methods of single 
section parameters [13,14] (such as mean camber line, maximum 
gauge, chord length, chord inclination, center points of leading/
trailing edges), and the multi-section parameters (such as 
tortuosity, skewness, profile error) (Figure 12). 

In the applications of visual localization during robot grinding, 
blade inspection and transformation correction, there exists 
a common problem: commercial software (Geomagic) lacks 
specific functionality (such as stable ADF/VMSM matching, fast 
calculation of transverse/lengthways moving, integration of 
scanning sensor-calculation method-unified software interface), 
and it has to use multi commercial software with trivial human-
computer interaction (Figures 13-17).

Figure 11: Point cloud fairing.

Figure 13: iCloud three dimensional software.

Figure 14: Scanning matching and grinding.

Figure 15: Blade inspection.

Figure 12:  Section parameter calculation.
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Discussion and Conclusion
We cooperated with WTB Company and have developed the 
robotic belt grinding system with force control, and already 
achieved steam turbine blades grinding in batch. Particularly for 
the 600 mm length casting blade, compared with the grinding 
time, profile accuracy and surface roughness Ra by manual 
operation, the corresponding values are reduced to 25 min, ± 0.1 
mm, <0.8 μm by robotic grinding respectively.

Application
Based on the VC++/OpenGL platform, we developed special 
software mainly used for above application. It has the functionality 
of optical scanning, data simplification, 3-D matching, profile 
inspection, parameter calculation, chromatograph display, ICD/
ASC/PLY/IGES output, and so on

This is the main process of visually-guided robotic belt grinding.

This is the blade inspection experiments, using the scanning 
sensor and proposed calculation methods.
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Figure 16: Grinding of large blades.

Figure 17: Grinding of large blades to profile accuracy.


