Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Der Chemica Sinica, 2017, 8(3):333-341

The Solvent Synthesis, Growth Mechanism, Photocatalytic Properties of AgInS, Nanoplate and Nanoparticle

Yue Wang^{1*}, Yongfang Shi^{2*}, Dongwei Li¹, Tao Zhang¹, Xiaochuan Zou¹ and Yucen He¹

¹School of Biological and Chemical Engineering, Chongqing University of Education, Nan'an District, Chongqing, China ²Fujian Institute of Research on the Structure of Matter, Key Laboratory of Research on Chemistry and Physics of Optoelectronic Materials, Chinese Academy of Sciences, Fuzhou, Fujian Province, China

ABSTRACT

Orthorhombic $AgInS_2$ nanoplate and nanoparticle were synthesized using pyridine and 1-dodecanethiol as the solvent. The obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), field-emission transmission electron microscope (FETEM), and the possible growth mechanism of $AgInS_2$ was also proposed by the exploration of reaction temperature and time. Meanwhile, the band gap of $AgInS_2$ were calculated by the UV-vis diffuse reflectance spectrum, and the photocatalytic activity was also investigated. Those experimental results indicate that the reaction temperature, reaction time and solvent have an influence on the phase and morphology of $AgInS_2$, and both $AgInS_2$ nanoplate and nanoparticle have some ability on photocatalytic degradation of organic dyes under visible light irradiation.

Keywords: Orthorhombic AgInS, Nanostructure, Solvent method, Growth mechanism, Photocatalysis

INTRODUCTION

With the development of society, people pay more and more attention to the pollution caused by industrial waste water [1]. The semiconductor photocatalytic method, especially using cheap sunlight as the light source, to realize visible photocatalytic degradation of pollutants is a new technology of low energy consumption and environmental protection. As an important I-II-VI group semiconductor material, ternary metal sulfide, AgInS., has gradually become a research hotspot, due to its unique photoelectric and catalytic performance, which has potential application prospect in the field of light-emitting diodes, nonlinear optical devices, solar cells, photocatalysis, biological labelling [2-7]. Currently, the preparation methods of AgInS, are hot pressing method [8], hot-wall epitaxial growth method [9], hydrothermal method [10], solvothermal method [11], hot injection method [12], and thermolysis method [13], etc. The previous works focus on the 0D AgInS, quantum dots, but few studies of 2D and 3D nanostructures [4]. In our previous work [13,14], the metastable orthorhombic AgInS, flower-like microsphere was successfully prepared by the pyrolysis of organometallic precursors at 250~280°C. However, considering the high temperature (above 200°C) needs the high energy consumption, and the products should be heated more uniformly in the solvent, as well as the solvent has important influence on the morphology of the product, so we try to disperse the precursor in different solvent to obtain AgInS, nanostructures with different morphology at lower temperature. The results indicate that AgInS, nanoplate and nanoparticle can be obtained at lower temperature (120~150°C) using pyridine and 1-dodecanethiol as the solvent. Meanwhile, the obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), field-emission transmission electron microscope (FETEM), and the possible growth mechanism of AgInS, was also proposed by the exploration of reaction temperature and time. Finally, the bandgap of AgInS, were calculated by the UV-vis diffuse reflectance spectrum, and the photocatalytic activity was also investigated, as well as its possible photocatalytic mechanism.

MATERIALS AND METHODS

Experimental

Chemicals

Silver nitrate (AgNO₃), indium nitrate hydrate (In(NO₃)₃·4.5H₂O), carbon disulfide (CS₂), potassium hydrate (KOH), ethanol (C₂H₅OH), chloroform (CHCl₃), dichloromethane (CH₂Cl₂), and pyridine (C₅H₅N), dichloromethane (CH₂Cl₂), 1-dodecanethiol (C₁₂H₂₅SH), ethylenediamine (C₂H₈N₂), and oleic acid (C₁₈H₃₄O₂) were purchased from Shanghai Chemical Co.. [CH₃(CH₂)₇]₂NH (Alfa, A.R.) was used. All reactants were used as received.

Synthesis of Ag(OTC) and In(OTC), Precursors

Precursors were prepared according to the reactions shown in **Scheme 1**. Below 0°C, CS₂ had reacted with $[CH_3(CH_2)_7]_2NH$ and KOH to produce enough dithiocarbamate salt in ethanol (**Reaction 1**). Then, an ethanol solution with excess $In(NO_3)_3 \cdot 4.5H_2O$ was added to generate white suspension $In[S_2CN(C_8H_{17})_2]_3$ (**Reaction 2**). After stirring for 5 min, an ethanol solution with an appropriate amount of AgNO₃ with a mole ratio of M⁺:In³⁺ = 1:1.25 was added and stirred for another 2 h to ensure the complete reaction to form $In(OTC)_3$ and Ag(OTC) precursors (**Reaction 3**) and make them mix evenly. A solid was obtained after the rotary evaporation of ethanol and then dissolved in CHCl₃ and filtrated. Then, this CHCl₃-filtration was rotary evaporated to generate the Ag(OTC)/In(OTC)₃ precursor, a soil-like solid. Finally, the precursors were washed by acetone. The precursor color is yellow.

Synthesis of the AgInS,

In a typical process, the precursor was added into a solution containing pyridine or other solvents. The mixture was stirred for 15 min at room temperature in air, and then poured into a 25 ml Teflon-lined stainless autoclave. The autoclave was heated at $120 \sim 150^{\circ}$ C for $17.5 \sim 20$ h under autogenous pressure, and then air-cooled to room temperature. The resulting precipitates were collected and washed with CH₂Cl₂ and ethanol thoroughly and dried at room temperature in air. The AgInS₂ product is dark red.

Characterization

X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and scanning electron microscopy (SEM) were used to characterize the structure, composition, size, and shape of the synthesized nanoproducts, respectively. The XRD patterns were collected with the aid of a PANalytical X'Pert Pro diffractometer at room temperature, at 40 kV and 40 mA with Cu $K\alpha$ radiation. The TEM images were obtained using a JEM 2010 TEM equipped with a field emission gun operating at 200 kV. Images were acquired digitally using a Gatan multipole scanning CCD camera with an imaging software system. The EDX analyses were performed on a carbon-film-coated Cu grid with the aid of a JEM 2010 TEM equipped with an Oxford INCA spectrometer. The optical diffuse reflectance spectrum was measured at room temperature using a Perkin-Elmer Lambda 900 UV–vis spectrophotometer equipped with an integrating sphere attachment and BaSO₄ as reference. The UV-vis spectra were measured on a Perkin-Elmer Lambda-35 spectrophotometer.

Photocatalytic activity test

The photocatalytic activities of the samples were investigated by the decomposition rate of methyl orange (MO) or Methylene blue (MB) in an aqueous solution under UV-vis light irradiation. Briefly, 100 mg of $AgInS_2$ nano powders was dispersed in 100 mL of MB or MO solution with an initial concentration of 10 ppm. Prior to irradiation, the suspension was stirred in the dark for 1 h to ensure the establishment of the adsorption-desorption equilibrium. The assembly was continuously stirred and irradiated by a 300 W halogen-tungsten lamp. At an irradiation time interval of 1 h, 4 mL of the suspension was collected and then the slurry samples including the photocatalyst and MO or MB solution were centrifuged to remove the photocatalyst particles. The concentration of MO or MB was analyzed by measuring the absorbance at 664 nm wavelength for MB (or 463 nm wavelength for MO) using a UV-VIS spectrophotometer.

RESULTS AND DISCUSSION

Phase and microstructure

The XRD patterns of the as-synthesized products prepared using pyridine as the solvent at 120° C for 20 h (**Figure 1a**) and using 1-dodecanethiol as the solvent at 150° C for 17.5 h (**Figure 1b**) can be indexed to the ICDD pattern (PDF#25-1328). We can see that the position of all the diffraction peaks corresponds to (120), (002), (121), (202), (320), (123) and (322) plane and are in agreement with the orthorhombic phase of AgInS₂. The difference between those patterns is that the intensity of (002) plane in **Figure 1a** is much higher than one in **Figure 1b**, which is probably due to their different morphology.

Figure 1: XRD pattern of as-prepared AgInS $_2$ samples: (a) 120°C/20 h, pyridine as the solvent; (b) 150°C/17.5 h, 1-dodecanethiol as the solvent.

As shown in **Figures 2a** and **2b**, the $AgInS_2$ produced in pyridine at 120°C for 20 h are nanoplates with width of 300-500 nm, and thickness of about 40 nm, which are stacked and not well dispersed. However, $AgInS_2$ produced in 1-dodecanethiol at 150°C for 17.5 h are irregular nanoparticles (SEM: **Figure 2c**), which is severely agglomerated and the dispersity is still not well even after ultrasonic concussion (TEM: **Figure 2d**). Comparing with 0D nanoparticle, the 2D nanoplate takes a preferred orientation for powder diffraction, so the intensity of (002) diffraction peak is greatly increased, which also explains why the peak in **Figure 1a** is significantly higher than that in **Figure 1b**. A typical HRTEM image of the edge of such a nanoparticle is shown in **Figure 2e**, indicating the size of those particles is about 14 nm (calculated by the red circle). Clear lattice fringes (**Figure 2f**) can be observed after FFT inversion and the single-crystal natures of the nanoparticles are revealed. The interplanar spacing is about 0.357 nm, in good agreement with the distance (0.356 nm) of (120) planes of orthorhombic AgInS₂.

Figure 2: (a, b) SEM images of AgInS₂ samples prepared at 120°C for 20 h, using pyridine as the solvent; (c,d) SEM and TEM images of AgInS₂ samples prepared at 150°C for 17.5 h, using 1-dodecanethiol as the solvent; (e,f) HRTEM images of particle in picture d, indicating that the size of particle is about 14 nm (calculated by the red circle), and the interplanar spacing is 0.357 nm, in good agreement with the distance (0.356 nm) of (120) planes of orthorhombic AgInS₂

Using pyridine as the solvent, we can observe the formation of orthorhombic $AgInS_2$ by adjusting the reaction time under the condition of 120°C. When the reaction time was 5 h, a small amount of Ag_2S (**Figure 3a**) with weak diffraction peak of XRD was obtained, and there were only two obvious peaks; when the reaction time was increased to 10 h, the peak intensity of XRD (**Figure 3b**) had significantly enhanced, in good agreement with that of monoclinic Ag_2S (ICDD PDF# 14-0072). It can be seen from **Figure 3d** that the Ag_2S also contains two morphologies, namely, the hexagon with a length of about 100 nm and the particle with size of about 50 nm, and the amount of particles is significantly more than the hexagon. When the reaction time was further extended to 15 h, the obvious diffraction peak of orthorhombic $AgInS_2$ appeared (**Figure 3c**), and its intensity is higher than that of Ag_2S , indicating that most of the Ag_2S have been transformed into $AgInS_2$. Furthermore, the amount of the original small particles greatly reduced, but both the number and size of the hexagonal sheet increased (**Figure 3e**). This result shows that, as the reaction time is increased, the newly generated monoclinic Ag_2S gradually transforms into orthorhombic $AgInS_2$, accompanied by the transformation from particles to hexagonal plate. This point can be verified that pure orthorhombic $AgInS_2$ nanoplates are obtained when the reaction time is extended to 20 h (**Figures 1a** and **2a**).

Figure 3: XRD patterns and SEM images of products prepared at 120°C for different time: (a) 5 h, weak diffraction peak, monoclinic Ag_2S ; (b,d) 10 h, monoclinic Ag_2S , similar quantity of nanoplate and nanoparticle; (c,e) 15 h, the major orthorhombic AgInS₂ with minor monoclinic Ag_2S , and the quantity of nanoplate is much larger than nanoparticle.

According to the above experimental facts, combined with the previous work [15] and results obtained by our group [16,17], we has proposed the possible growth mechanism of orthorhombic AgInS₂, and the reactions are as follows (HNR₂, R= -C₈H₁₂):

$$HNR_2 + KOH + CS_2$$

$$\rightarrow \mathrm{KS}_{2}\mathrm{CNR}_{2} + \mathrm{H}_{2}\mathrm{O} \tag{1}$$

$$KS_2CNR_2 + AgNO_3 \rightarrow AgS_2CNR_2 + KNO_3$$
⁽²⁾

$$KS_2CNR_2 + In(NO_3)_3 \rightarrow In(S_2CNR_2)_3 + KNO_3$$
(3)

$$AgS_2CNR_2 \rightarrow Ag_2S + others$$
 (4)

$$Ag_{2}S + In(S_{2}CNR_{2})_{3} \rightarrow AgInS_{2} + others$$
(5)

Scheme 1: Reactions to generate AgInS₂

The as-prepared KS₂CNR₂ (**Reaction 1**) was coordinated with Ag⁺ and In³⁺ to form the corresponding complex AgS₂CNR₂ (**Reaction 2**) and In(S₂CNR₂)₃ (**Reaction 3**). Since these complexes were formed in solution and have been fully stirred, it should not be a simple mechanical mixture in the final solid form, but rather a uniform mixture at the molecular level. As the reaction temperature increased, AgS₂CNR₂ began to decompose into corresponding Ag₂S (**Reaction 4**), because Ag⁺ has a high diffusivity under high temperature, which can move freely in the lattice of cation hole [18]. Therefore, In³⁺, released slowly from In(S₂CNR₂)₃, can replace part of Ag⁺ in the Ag₂S lattice, leading to form orthorhombic AgInS₂ gradually (**Reaction 5**). On the other hand, when using pyridine as the solvent, the as-prepared Ag₂S particles wrapped by pyridine, would grow anisotropically into lamellar structure; while using

Pelagia Research Library

1-dodecanethiol as the solvent, the as-prepared Ag_2S particles wrapped by 1-dodecanethiol, would grow isotropically into irregular particle with small size. Hence, when the In^{3+} partially replaces the Ag^+ in the Ag_2S lattice, it will not change the morphology, and finally the product grows into nanoplates or nanoparticles, respectively.

Effect of reaction temperature

In order to investigate the morphology-reaction temperature relationship, a batch of parallel reactions using pyridine as the solvent has been carried out, and some representative SEM images are displayed. The detailed experimental results are listed in **Table 1**. The results indicated that when temperature is increased to 150° C, the products are also pure orthorhombic AgInS₂ nanoplate (XRD: **Figure 4a**, SEM: **Figure 5a**), similar to that of 120° C; while at 170° C, besides of orthorhombic AgInS₂, minor tetragonal AgInS₂ (ICDD PDF# 25-1330) begins to appear, and lots of nanoparticles are observed (XRD: **Figure 4b**, SEM: **Figure 5b**), indicating that some orthorhombic AgInS₂ has transformed into tetragonal AgInS₂, namely metastable phase transformes into stable phase [19], so the morphology of products takes an obvious change. When the temperature continues to rise to 190° C, the relative intensity of the diffraction peak of tetragonal phase is not significantly improved (**Figure 4c**), showing that the percentage of tetragonal phase has not significantly enhanced. The products are also nanoparticles similar to that of 170° C, but almost none of nanoplate is observed (**Figure 5c**).

Table 1: Products synthesized using pyridine as the solvent at different temperature.

Tempreature (°C)	Time (h)	XRD	Phase	SEM	Morphology
150	17.5	Figure 4a	orthorhombic AgInS ₂	Figure 5a	nanoplate
170	17.5	Figure 4b	orthorhombic AgInS ₂ + tetragonal AgInS ₂ (minor)	Figure 5b	nanoplate (minor) + nanoparticle
190	17.5	Figure 4c	orthorhombic $AgInS_2$ + tetragonal $AgInS_2$ (minor)	Figure 5c	nanoparticle

Figure 4: XRD patterns of products prepared at different temperature for 17.5 h using pyridine as the solvent: (a) 150°C, orthorhombic AgInS₂; (b) 170°C, orthorhombic AgInS₂ (major) + tetragonal AgInS₂ (minor); (c) 190°C, orthorhombic AgInS₂ (major) + tetragonal AgInS₂ (minor)

Therefore, using pyridine as the solvent, the optimal temperature range to synthesize orthorhombic AgInS₂ nanoplate is 120~150°C, and the optimal range of reaction time is 17.5~20 h. If the temperature is too low or the time is too short, the samples should not fully react to produce pure ternary sulfide AgInS₂. However, the higher temperature will make metastable AgInS₂ transform into tetragonal AgInS₂. It is interesting to find that when 1-dodecanethiol is used as the solvent, the orthorhombic AgInS₂ can be obtained at 120~190°C for 17.5~20 h, which indicates that the solvent also plays a certain role in the formation of AgInS₂.

Effect of the solvent

To further understand the effect of the solvent, some other solvents are used instead of pyridine and 1-dodecanethiol. All these parallel reactions have been run at 150°C for 17.5 h. The detailed experimental results are listed in **Table 2**. When using ethylenediamine as the solvent, the product is a mixture containing lots of orthorhombic AgInS₂ and

Figure 5: SEM images of products prepared at different temperature for 17.5 h using pyridine as the solvent: (a) 150°C; (b) 170°C; (c) 190°C.

Table 2: Products synthesized using other solvents at 150°C for 17.5 h.

Sample	Solvent	XRD	Phase	SEM	Morphology
1	Ethylenediamine	Figure 6a	orthorhombic AgInS ₂ + tetragonal AgInS ₂ (minor)	Figure 6c	square nanoplate + particle (minor)
2	Oleic acid	Figure 6b	orthorhombic $AgInS_2$ + monoclinic Ag_2S	Figure 6d	particle

a small amount of tetragonal $AgInS_2$ (XRD: Figure 6a); besides of a small number of particles, most of products are square sheet with the thickness of 30~60 nm (SEM: Figure 6c). While using oleic acid as the solvent, both orthorhombic $AgInS_2$ nanoparticles and monoclinic Ag_2S nanoparticles are observed (XRD: Figure 6b; SEM: Figure 6d), indicating that 150°C is too low, or 17.5 h is too short for as-prepared Ag_2S completely transforms to $AgInS_2$, which may be due to the strong adsorption properties of oleic acid. The oleic acid can be firmly adsorbed on the surface of as-prepared Ag_2S particles, which may hinder In^{3+} to replace the Ag^+ , leading the conversion rate is greatly reduced, so it requires higher temperature or longer time to complete the transformation. This result shows that the solvent has a great influence on the phase and morphology of the products.

Figure 6: XRD patterns and SEM images of products prepared at 150° C for 17.5 h using other solvents: (a,c) ethylenediamine, orthorhombic AgInS₂ + tetragonal AgInS₂ (minor), square nanoplate + particle (minor); (b, d) oleic acid, orthorhombic AgInS₂ + monoclinic Ag₂S, nanoparticle.

UV-VIS diffuse reflectance spectroscopy

For I-III-VI family compounds, most of them are direct-narrow-gap semiconductors with chalcopyrite structure [20]. $AgInS_2$ has chalcopyrite and orthorhombic phases, and the band gap values are 1.87 and 1.98 eV, respectively [21-23]. Because of its suitable bandgap, it has a good absorption in the visible range, so it is a good photocatalytic material. Fig.7 is the solid UV-vis diffuse reflectance spectra of $AgInS_2$ nanoplates and $AgInS_2$ nanoparticles. The band gap of $AgInS_2$ can be calculated according to the Equation 1[24]:

$$\alpha h v = (h v - E_{o})^{n} \tag{1}$$

Here, α means absorption coefficient; hv means photoelectron energy; the value of n is 1/2 for indirect bandgap compouds, while 2 for direct bandgap compouds, and E_g means bandgap. Taking hv as the abscissa, with $(\alpha hv)^{1/n}$ as ordinate, the curve is extended to intersect with the abscissa, and the bandgap can be calculated. As seen in **Figure**

Pelagia Research Library

7a, the bandgap of $AgInS_2$ nanoplate is about 1.61 eV, close to the literature report of $1.58 \sim 1.63 \text{ eV}[4,10,24]$; while the bandgap of $AgInS_2$ nanoparticle is about 1.98 eV (**Figure 7b**), consistent with the band gap of $AgInS_2$ crystal. The difference between the two gaps is probably caused by the different particle sizes. Because the nanoplate has the larger size (thickness about 40 nm, width 300~500 nm), while the nanoparticle is only about 14 nm, which results in the blue shift of the absorption edge due to small size effect.

Figure 7: UV-vis diffuse reflectance spectrum of as-prepared products: (a) AgInS₂ nanoplate, synthesized at 120°C for 20 h using pyridine as the solvent, the bandgap is about 1.61 eV; (b) AgInS₂ nanoparticle, synthesized at 150°C for 17.5 h using 1-dodecanethiol as the solvent, the bandgap is about 1.98 eV.

Photocatalytic activity of the AgInS, samples

The photocatalytic activities of $AgInS_2$ samples are measured on the degradation of methyl blue (MB) or methyl oragne (MO) in water under UV-vis light irradiation. As shown in **Figure 8a**, with the advance of illumination time, the absorbance of MB in the solution is getting smaller and smaller, indicating that the concentration of MB is lower and lower. After 300 min of irradiation, the conversion of MB by $AgInS_2$ nanoparticles is about 66% (**Figure 8b**, red curve). However, the conversion of MO by $AgInS_2$ nanoplates is about 25% (**Figure 8b**, blue curve). The results show that $AgInS_2$ has the certain ability on photocatalytic degradation of organic dyes such as MB, and it is probably that

Figure 8: (a) Absorption spectra of MB photocatalytic degraded by $AgInS_2$ nanoparticle; (b) The relation between MB concentration and time photocatalytic degraded by $AgInS_2$ nanoparticle (the red curve), and the relation between MO concentration and time photocatalytic degraded by $AgInS_2$ nanoplate (the blue curve).

the low-power tungsten halogen lamp (300 W) used in the experiment causes unexciting conversion. The possible mechanism on photocatalytic degradation of MB by AgInS, can be explained by the following **Scheme 2**:

$\operatorname{AgInS}_2 + hv \leftrightarrow \operatorname{AgInS}_2(h^+ + e^-)$	(6)
$e^- + O_2 \rightarrow O_2^-$	(7)
$2e^- + O_2 + 2H^+ \rightarrow H_2O_2$	(8)
$\mathrm{H_2O_2}+\bullet\mathrm{O_2}^-\to\mathrm{OH}^-+\bullet\mathrm{OH}+\mathrm{O_2}$	(9)
•OH/ h^+ /•O ₂ ⁻ + MB \rightarrow intermediates \rightarrow CO ₂ +H ₂ O	(10)

Scheme 2: The possible mechanism on photocatalytic degradation of MB by AgInS, [25]

Under visible-light irradiation, the electrons transfer from valance band (VB) of AgInS₂ to the conduction band (CB), while the holes (h^+) generate in its VB (**Reaction 6**). The photogenerated electrons (e^-) can react with adsorbed O, to

produce $\cdot O^2$ (**Reaction 7**) and H_2O_2 (**Reaction 8**). H_2O_2 can further reacts with $\cdot O^2$ and e^- to generate hydroxyl radicals ($\cdot OH$) (**Reaction 9**). All of $\cdot O_2^-$, h^+ and $\cdot OH$ play a role in the degradation and mineralization of MB (**Reaction 10**).

CONCLUSION

Two kinds of orthorhombic $AgInS_2$ nanostructures with different morphologies have been successfully prepared by the solvent method using KS_2CNR_2 , $AgNO_3$, and $In(NO_3)_3$ as reagents. When using pyridine as the solvent, by tuning the reaction temperature and reaction time, it is found that pure $AgInS_2$ nanoplates with relatively uniform morphology can be obtained at 120~150°C for 17.5~20 h; when the temperature is below 120°C or the reaction time is less than 10 h, most of the product is binary monoclinic Ag_2S , while there will be another ternary tetragonal $AgInS_2$ generated over 170°C. When using 1-dodecanethiol as the solvent, pure $AgInS_2$ nanoparticles with size of about 14 nm have been obtained at 120~190°C for 17.5~20 h, indicating that the solvent has a great influence on the phase and morphology, and this point has also been verified using ethylenediamine or oleic acid as the solvent. On the other hand, UV-vis diffuse reflectance spectra show that the bandgap of $AgInS_2$ nanoplates (1.61 eV) with larger size is less than that of $AgInS_2$ nanoparticles (1.98 eV) with smaller size, which is likely to be caused by the blue shift of the absorption edge due to the small size effect. Furthermore, the photocatalytic experiments show that $AgInS_2$ has certain ability on photocatalytic degradation of organic dyes such as MB.

ACKNOWLEDGEMENTS

The research was supported by the Natural Science Foundation of Chongqing (Nos. cstc2013jcyjA50033, cstc2015jcyjA0317), the Project Foundation of Chongqing Municipal Education Committee (Nos. KJ1601403, KJ1601412), and the Project Foundation of Chongqing University of Education (Nos. 16xjpt08, JG201715, XK20170210).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- Ren NQ, Zhou XJ, Guo WQ, Yang SS (2013) A Review on treatment methods of dye wastewater. J Chem Ind Eng (China) 6: 84-94.
- [2] Zeng Z, Wang AQ, Ping LL, Yang JL, Wang QM (**2015**) Encapsulation of lanthanides in ternary I III VI AgInS₂ nanocrystals and their physical properties. *Mater Lett* 141: 225-227.
- [3] Peng SJ, Zhang SY, Zhang SY, Ramakrishna S (2012) Synthesis of AgInS₂ nanocrystal ink and its photoelectrical application. *Phys Chem* 14: 8523-8529.
- [4] Zou XJ, Dong YY, Rang CQ, Cui YB, Chen Zb (2016) Fabrication of Flower-like AgInS₂ Microsphere and Its Photocatalytic Reduction of Cr(VI). JWuhanUniv (Nat Sci Ed) 62: 92-96.
- [5] Bu CF, Liu LW, Wang Q, Zhang BT, Hu SY, et al. (2015) Folic Acid-conjugated AgInS₂ Quantum Dots for in vitro Cancer Cell Imaging. *Chin J Lumin* 36: 989-995.
- [6] Théo C, Gilles LB, Frédéric C (2016) Photoluminescence properties of AgInS₂–ZnS nanocrystals: the critical role of the surface. Nanoscale 8: 7612-7620.
- [7] Azam ES (2014) Photocatalytic oxidation of cyanide under visible light by Pt doped AgInS₂ nanoparticles. J Ind Eng Chem 20: 4008-4013.
- [8] Yoshino K, Komaki H, Kakeno T, Akakia Y, Ikaria T (2003) Growth and characterization of p-type AgInS₂ crystals. J Phys Chem Solids 64: 1839-1842.
- [9] You SH, Hong KJ, Lee BJ, Jeong TS, Younb CJ, et al. (**2002**) Temperature dependence of band gap and photocurrent properties for the AgInS, epilayers grown by hot wall epitaxy. *J Cryst Growth* 245: 261-266.
- [10] Wei QL, Zhao XL, Yao PP, Mu J (2011) Preparation and Visible Light Photocatalytic Activity of AgInS₂ Nanoparticles. *Chin J Inorg Chem* 27: 692-694.

- [11] Kharkwal AN, Jain K, Tyagi SB, Kharkwal M (2015) Novel synthesis of selective phase-shape orientation of AgInS₂ nanoparticles at low temperature. *Colloid Polym Sci* 293: 1953-1959.
- [12] Do YR, Hong SP, Park HK, Ji HO, Yang H, et al. (2012) Comparisons of the structural and optical properties of o-AgIn₂, t-AgIn₅, and c-AgIn₅S₈ nanocrystals and their solid-solution nanocrystals with ZnS. J Mater Chem 22: 18939-18949.
- [13] Torimoto T, Adachi T, Okazaki K, Sakuraoka M, Shibayama T, et al. (2007) Facile synthesis of ZnS-AgInS₂ solid solution nanoparticles for a color-adjustable luminophore. J Am Chem Soc 129: 12388-12389.
- [14] Wang Y, Zou XC, Wang C, Shi YF (2016) Thermolysis Synthesis and Growth Mechanism of Metastable MInS₂ (M=Ag, Cu) Flowerlike Microsphere. *Chin J Inorg Chem* 32: 2151-2157.
- [15] Zou ZG, Gap Y, Long F, Zhang J (2015) Synthesis and Mechanism of Wurtzite CuInS₂ Nanocrystals. J Synth Cryst 44: 2164-2170.
- [16] Shi YF, Wang Y, Wu LM (**2013**) Hexagonal MIn_2S_4 (M = Mn, Fe, Co): Formation and phase transition. *J Phys Chem C* 117: 20054-20059.
- [17] Fang F, Chen L, Chen Y B, Wu LM (2010) Synthese and Photocatalysis of ZnIn₂S₄ nano/micropeony. J Phys Chem C 114: 2393-2397.
- [18] Lu X, Zhuang Z, Peng Q, Li Y (2011) Controlled synthesis of wurtzite CuInS₂ nanocrystals and their side-by-side nanorod assemblies. CrystEngComm 13(12): 4039-4045.
- [19] Delgado G, Mora A J, Pineda C, Tinoco T (2001) Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction. *Mater Res Bull* 36: 2507-2517.
- [20] Xie CP, Xiang WD, Luo L, Zhong JS, Zhao BY, et al. (2014) Advances on AgInS, quantum dots. J Funct Mater 45: 4009-4016.
- [21] Hu JQ, Lu QY, Tang KB, Liu XM (1999) Solvothermal reaction route to nanocrystalline semiconductors AgMS₂ (M=Ga, In). *Chem Commun* 12: 1093-1094.
- [22] Aguilera MLA, Hernández JRA, Trujillo MAG, López MO, Puente GC (2007) Photoluminescence studies of chalcopyrite and orthorhombic AgInS, thin films deposited by spray pyrolysis technique. *Thin Solid Films* 515: 6272-6275.
- [23] Aguilera MLA, Ortega-López M, Resendiz VMS, Hernández JA, Trujillo MAG (2003) Some physical properties of chalcopyrite and orthorhombic AgInS, thin films prepared by spray pyrolysis. *Mater Sci Eng B* 102: 380-384.
- [24] Li XM, Niu JZ, Shen HB, Li LS (2010) Shape controlled synthesis of tadpole-like and heliotrope seed-like AgInS₂ nanocrystals. Cryst Eng Comm 12: 4410-4415.
- [25] Deng F, Zhong F, Hu P, Pei XL, Luo XB, et al. (2017) Fabrication of In-rich AgInS₂ nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. J Nanopart Res 19: 14.