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Introduction
Global patterns of health risks show that more than one third 
of the world’s deaths are attributable to a small number of risk 
factors, with the five leading global risks for mortality being 
high blood pressure, tobacco use, high blood glucose, physical 
inactivity, overweight and obesity [1]. These risks factors are 
responsible for raising the risk of chronic diseases, and affect 
countries across all income groups: High, middle and low [2]. 
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However, as a country develops overtime, major risks to health 
shift from traditional risks which are associated with poverty (e.g. 
inadequate nutrition or unsafe water and sanitation) to modern 
risks (e.g., Overweight and obesity) [3].

In the US, excess adipose tissue has become an increasing public 
health concern [4], because of its deleterious effects on multiple 
body organ systems through thrombogenic, atherogenic, 
oncogenic, hemodynamic and neurohumoral mechanisms [5]. 
It has also been linked to multiple medical conditions, such as 
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Abstract 
Diabetes, hypertension, and hyperlipidaemia are three medical conditions usually 
linked to high body fat content. The Body Mass Index (BMI), calculated by dividing 
a person’s weight in kilograms by the square of their height in meters, is the 
most commonly used measure for monitoring the prevalence of excess body fat 
content. Past studies linking BMI to the prevalence of diabetes, hypertension 
and hyperlipidaemia have looked at the effects in isolation, hence assuming 
independence in their occurrences.

This study takes a different approach, considering the potential interconnectedness 
of these three metabolic diseases, to model the effect of BMI on their joint 
likelihood for respondents in the 2008 Medical Expenditure Panel Survey (MEPS) 
dataset. For this, we specify and estimate a standard univariate probit model, 
then we move to a fully parametric trivariate probit specification to relax the 
independence assumption, followed by a semi-parametric trivariate probit 
specification to further relax the linearity assumption for the parametrically 
entering numerical risks factors (covariates) in each of the three equations for 
diabetes, hypertension, and hyperlipidaemia.

The results suggest that the semi-parametric trivariate probit specification 
is better at capturing the true effects of BMI on the likelihood of these three 
metabolic diseases in a population. In fact the statistically significant correlation 
coefficients 0.278, 0.362, and 0.356 between the diabetes, hypertension and 
hyperlipidaemia equations suggest their joint positive dependence. Furthermore, 
BMI contributes significantly more to hypertension (5%), followed by diabetes 
(4.4%), and hyperlipidaemia (2.7%).
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diabetes, hypertension, dyslipidaemia and several types of cancer 
[6-10]. And was in fact identified as one of the leading global risks 
for mortality, and responsible for 5% of deaths worldwide [1]. For 
the last 30 years obesity has been primarily diagnosed by using 
the Body Mass Index (BMI), which is currently the main focus in 
obesity treatment recommendations, with different treatment 
cutoff points based upon the presence or absence of obesity 
related diseases. This simple index of body weight, calculated 
using a person’s weight in kilograms divided by the square 
of their height in meters [11], has been consistently used in a 
myriad of epidemiological studies, and has been recommended 
for individual use in clinical practice to guide recommendations 
for weight loss and weight control [12].

Despite the numerous studies that looked at the associations 
between BMI and the risks of metabolic diseases in the past [13-
16], no study to the best of our knowledge has investigated these 
effects jointly. In fact, they all looked at the BMI relationship 
with each individual disease separately. Given the potential 
interconnectedness of metabolic diseases [17-19], and the fact 
that high BMI has its roots in a complex chain of events over 
time, consisting of socioeconomic factors, environmental and 
community conditions, and individual behavior, modeling its 
effects on diabetes, hypertension, and hyperlipidaemia in a 
joint fashion is very crucial to understanding how their likely 
incidences relate to one another. By quantifying this joint impact 
of high BMI, evidence based choices can be made about the 
most effective interventions [20-23] to jointly target them and 
improve global health.

Therefore, the objective of this research is simply to model the 
effects of BMI on the joint likelihood of diabetes, hypertension, 
and hyperlipidaemia, so as to see not only the differential effects 
of BMI on each disease condition, but also to understand the 
correlation between the unobserved risk factors causing them. 
In doing so, we seek to answer two basic questions: Q01: Are the 
effects of BMI on each of these metabolic diseases the same? 
And Q02: Are the unobserved risk factors affecting these three 
diseases conditions linked? With the following maintained null 
hypothesis:

•	 H01: The effects of BMI on these three disease conditions 
are different.

•	 H02: The unobserved risk factors affecting these three 
disease conditions are linked (Presence of shared 
etiology).

In our quest to test the above hypothesis, the rest of the study 
is organized as follows: Section 2 provides a background on BMI, 
diabetes, hypertension, and hyperlipidaemia in our studied 
population. Section 3 presents the data and the variables 
used for the econometric estimations. Section 4 illustrates 
the trivariate probit model linking BMI to the three metabolic 
diseases (diabetes, hypertension, and hyperlipidaemia). Section 
5 discusses the results from the estimations, while section 6 
concludes the analysis.

Background on BMI, Diabetes, 
Hypertension and Hyperlipidaemia
BMI is a summary measure of an  individual’s height and weight, 
calculated by dividing a person’s weight in kilograms by the square 
of their height in meters [11]. Using a measure such as BMI allows 
for a person’s weight to be standardized for their height, thus 
enabling individuals of different heights to be compared. BMI is 
the most commonly used measure for monitoring the prevalence 
of overweight and obesity at population level. However, it is only 
a proxy measure of the underlying problem of excess body fat. 
As a person’s body fat increases, both their BMI and their future 
risk of obesity-related illness also rise [24]. The MEPS uses the 
following classification [25]:

•	 Underweight: If BMI is less than 18.5.

•	 Normal weight: If BMI is between 18.5-24.9 inclusive.

•	 Overweight: If BMI is between 25.0-29.9 inclusive.

•	 Obesity: If BMI is between 30.0-39.9 inclusive.

•	 Morbidly obese: If BMI greater than or equal to 40.0.

Diabetes is a group of diseases characterized by high levels of 
blood glucose resulting from defects in insulin production, insulin 
action, or both [26,27]. Diabetes can lead to serious vascular 
deterioration and premature death. For example, damage to 
large blood vessels causes accelerated atherosclerosis and puts 
diabetics at a 2-to-4 fold higher risk of dying from heart attack or 
stroke than individuals of the same age without diabetes, while 
damage to small blood vessels results in end-organ diseases that 
significantly erode quality and length of life [28]. A combination 
of blood vessel and nerve damage contributes to poorly healing 
foot ulcers resulting in over 80,000 lower limb amputations per 
year. People with diabetes are also at increased risk for other 
conditions, including higher rates of cancer and infections [29].

The prevalence of diabetes continues to grow in the U.S., with 
the number of people with diagnosed diabetes now reaching 
17.5 million.1 The rising impact of diabetes is recognized by most 
specialties and disciplines, usually as a co-morbidity that has to 
be considered within the broader context of the patient’s overall 
management plan. Diabetes and its complications are potentially 
preventable yet they are taking an increasing slice of U.S. health 
dollar. In 2007, one out of every five health care dollars was spent 
in caring for someone with diagnosed diabetes, while one in ten 
health care dollars was attributed to diabetes. The estimated 
cost of diabetes in 2007 was $174 billion, which includes $58 
billion for diabetes related chronic complications and $58 billion 
in indirect cost, in the form of reduced national productivity. For 
the same year, diabetes caused 445,000 cases of unemployment 
disability, and accounted for 120 million work days absent, and 6 
million reduced productivity days for those not in the workforce.

These 2007 costs figures did not improve as of 2012, American 
Diabetes Association  shows that the total estimated cost of 
diagnosed diabetes is $245 billion, including $176 billion in direct 
medical costs and $69 billion in reduced productivity [30]. For 

1http://diabetes.niddk.nih.gov/dm/pubs/statistics
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the year 2012, the largest components of medical expenditures 
are hospital inpatient care (43% of the total medical cost), 
prescription medications to treat the complications of diabetes 
(18%), antidiabetic agents and diabetes supplies (12%), physician 
office visits (9%), and nursing/residential facility stays (8%).

The value of lost productivity due to diabetes related premature 
death was $26.9 billion in 2007 [31]. The total annual cost of $174 
billion is an increase of $42 billion since 2002, and suggests that the 
dollar amount has risen over $8 billion more each year [32]. This 
rising cost of diabetes imposes a burden on all sectors of society, 
in the form of higher insurance premiums paid by employees 
and employers, reduced earnings through productivity loss, and 
reduced overall quality of life for people with diabetes. People 
with diagnosed diabetes incur average medical expenditures of 
about $13,700 per year, of which about $7,900 is attributed to 
diabetes, and have average medical expenditures approximately 
2.3 times higher than what expenditures would be in the absence 
of diabetes American Diabetes Association et al. [30].

For hypertension, commonly referred to as high blood pressure 
[33], it is defined as a Systolic2 Blood Pressure (SBP) of 140 mm 
Hg or more, or a diastolic blood pressure (DBP) of 90 mm Hg or 
more, or taking antihypertensive medication [34]. The standard 
classification of blood pressure, and also adopted by MEPS [35] 
is as follows:

•	 Normal BP: SBP=less than 120 mmHg, and DBP=less than 
80mmHg.

•	 At risk (prehypertension): SBP=120–139 mmHg, and 
DBP=80–89 mmHg.

•	 High BP: SBP=140 mmHg or higher, and DBP=90 mmHg 
or higher.

Hypertension is a serious medical condition which, if not 
controlled, can lead to more serious cardiovascular conditions 
[36,37]. Control of hypertension has become a key national 
priority in the US as part of the Million Hearts Initiative from 
the Department of Health and Human Services, which aims to 
prevent 1 million heart attacks and strokes in the US by 2017 
[38]. Lifestyle factors, such as salt intake [39] exercise, weight 
control, and stress reduction [40], can affect the risk and impact 
of hypertension [41,42].

In the US, an estimated 19.4 percent of adults with hypertension 
are unaware they have the condition [43], and 25.8 percent or 
59.4 million adults were reported to have been told at two or 
more different health care visits that they have hypertension 
[25]. Between 2006 and 2011, there was a 25% increase in the 
number of people visiting US emergency rooms for essential 
hypertension. Emergency department visits for hypertension 
with complications and secondary hypertension also rose, 
from 71.2 per 100,000 population in 2006 to 84.7 per 100,000 
population in 2011 [44], costing the US economy almost $46 
billion annually in direct medical expenses and $3.6 billion in lost 
productivity [45].

2The minimum blood pressure level [35].

In regards to dyslipidemia, it is defined as an abnormal 
elevation of plasma lipids such as triglycerides, cholesterol and/
or fat phospholipids [46]. In the US the most common form of 
dyslipidemias are hyperlipidemias; that is, an elevation of lipids 
in the blood, often due to diet and lifestyle [47]. Hyperlipidaemia 
itself usually causes no symptoms but can lead to symptomatic 
vascular disease, including coronary artery disease (CAD), stroke, 
and peripheral arterial disease [46]. High levels of Triglycerides 
(TGs) (>1000 mg/dL [>11.3 mmol/L]) can cause acute pancreatitis. 
Severe hypertriglyceridemia (>2000 mg/dL [>22.6 mmol/L]) 
can give retinal arteries and veins a creamy white appearance 
and may contributes to the development of atherosclerosis 
[47]. High levels of Low-Density Lipoprotein (LDL) can cause 
arcus corneae and tendinous xanthomas over joints [48]. Early 
screening of young adults with asymptomatic hyperlipidaemia 
allow them to benefit from lipid-lowering therapies [49], and 
avoid complications.

Data and Variables Description
The study uses data from the 2008 MEPS public use file, MEPS 
HC-121: 2008 Full Year Consolidated Data File. The MEPS collects 
nationally representative data on health care use, expenditures, 
sources of payment, and insurance coverage for the U.S. civilian 
noninstitutionalized population. MEPS is cosponsored by the 
Agency for Healthcare Research and Quality (AHRQ) and the 
National Center for Health Statistics (NCHS)3. For a detailed 
description of the MEPS survey design [50].

Dependents variables
Diabetes: Adults were classified as having diagnosed diabetes 
if there was a response of ”yes” to a survey question asking 
whether the adult had been told they had diabetes by a health 
care professional at two or more different medical visits.

Hypertension: Respondents were classified as having diagnosed 
hypertension if there was a response of ”yes” to a survey question 
asking whether the adult had been told they had hypertension by 
a health care professional at two or more different medical visits.

Hyperlipidaemia: Individuals were classified as having diagnosed 
hyperlipidaemia if there was a response of ”yes” to a survey 
question asking whether the adult had been told they had 
hyperlipidaemia by a health care professional at two or more 
different medical visits.

Independents variables
The main independent variable of interest in this study is 
BMI followed by contextual variables (private, visits.hosp), 
predisposing conditions (health, limitation), geographical variable 
(region) and finally socio-demographic control variables (age, 
Income, education, gender, race). The Table 1 below provides 
further description and summary statistics for the variables used 
in this analysis.

3http://www.meps.ahrq.gov/ 
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Trivariate Probit Model of BMI 
and Diabetes, Hypertension and 
Hyperlipidaemia
Given that the incidence of each disease is captured by a binary 
variable (taking the value D=1 if the disease occurs, and D=0 
otherwise), we can model the shared etiology of the three 
metabolic diseases (Di, for i=1, 2, 3) using a trivariate probit 
model. The general specification (with the individual subscript 
suppressed for simplicity) for our multivariate probit model with 
three dependent variables and BMI fixed effect is

* '
0 1 ,i i i i i i iD BMI Xβ β β= + + +∈  1,2,3i =                                               (1)

Where *
iD  is an unobserved variable representing the latent 

utility (well-being) under disease i, and BMIi captures the fixed 
contribution of BMI to the well-being under disease i, while Xi is a 
vector of observed risk factors (or characteristics) believed to be 
relevant under disease i, β0i is the intercept coefficient, that is the 
minimum level of well-being not accounting for any risk factor. 

'
iβ  is a vector of unknown coefficients to be estimated. The last 

term єi represents the impact of unobserved risk factors on the 
well-being under disease i. єi is assumed normally distributed 
with mean µi and variance σi, and a variance-covariance matrix 
of: 

Therefore, the stochastic component of the general multivariate 
probit specification in equation (1) with the three latent 
(unobserved) continuous variables *

iD follow the trivariate 
normal distribution:

*
1 1 1 12 13
*
2 3 2 2 23
*
3 3 3

~ ,
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µ σ θ
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 		                         (3)

Where µi and σi, are respectively the mean and variance for *
iD  

and Өij are scalar corelation parameters. In this formulation 
each triplet of metabolic diseases (diabetes, hypertension, 
hyperlipidaemia) (Yi1, Yi2, Yi3) has 2 × 2 × 2=8 potential outcomes, 
(Yi1=1, Yi2=1, Yi3=1), (Yi1=1, Yi2=1, Yi3=0), and (Yi1=1, Yi2=0, Yi3=1), and 
(Yi1=0, Yi2=1, Yi3=2), and (Yi1=0, Yi=1, Yi3=0), and (Yi1=0, Yi2=0, Yi3=1), 
and (Yi1=1, Yi2=0, Yi3=0), (Yi1=0, Yi2=0, Yi3=0). The joint probability 
for each of these eight outcomes is modeled with six systematic 
components: The marginal probabilities Pr(Yi1=1), Pr(Yi2=1), and 
Pr(Yi3=1) and the correlation parameters θ12 , θ13 , and θ23 for the 
three marginal distributions. For identification purposes, the 
standard probit model restricts the diagonal elements (variances) 
σi, i=1, 2, 3 in equation(3) to 1. Since the correlation parameters 
do not correspond to one of the metabolic disease outcomes, 
the model estimates θ12 , θ13 , and θ23 as constants by default. 
Hence, only the three means equations (average well-being µ1 
under the first disease “diabetes”; and the average well-being 
µ2 under second disease “hypertension”; and the average well-
being µ3 under third disease “hyperlipidaemia”) are required. 
Each of these systematic components are modeled as functions 
of the sets of risk factors or explanatory variables. The following 
observation mechanism links the observed disease status, Di, 
with the latent variables (well-being) *

iD .
1
0iD 

= 


 if * 0iD ≥ 		                    	                   (4)

Thus the joint probability of a triplet of disease outcomes {Di=di, 
i=1, 2, 3}, conditioned on parameters β0, BMI , Σ and a set of risks 
factors (explanatory variables) X , can be written as:

[ ] ( )1 2 3 12 13 23 3 2 11 2 3
| , 1, 2,3 | , , , , , , ,i i A A A

Pr D d i BMI z z z dz dz dzβ φ θ θ θ= = ∑ = ∫ ∫ ∫                 (5)
Where φ is the standard multivariate normal density function with 
mean 0 and variance covariance matrix Σ, and Ai is the interval 
( )'

0 1, i i i i iBMI Xβ β β−∞ + +  if di =1and ( )'
0 1 ,i i i i iBMI Xβ β β+ + ∞ if 

di =0 [51]. The parameters β0i, β1i, β’i and the three correlations 
of the error terms are estimated via maximum likelihood 
methods. However, In addition to the fully parametric trivariate 
probit specification in equation (1), we consider a more flexible 
specification in the form of a semi-parametric trivariate probit as 

1 12 13

2 23

3

σ θ θ
σ θ

σ
∑ =

  18592 Mean SD
Bmi Body mass index 27.86 6.195

Diabetes Equal to 1 if diabetic 0.077 0.267
Hypertension Equal to 1 if hypertensive 0.249 0.432

Hyperlipidaemia Equal to 1 if hyperlipidemic 0.241 0.428
Age Age in years 39.89 13.459

Income Income in 1000 of $ 62499 53732.8
Education Years of education 12.66 2.991

Gender Equal to 1 if male 0.47 0.499
Limitation Equal to 1 if health limits physical activity 5.92 0.271

Private Equal to 1 if individual has private health insurance 0.635 0.481
Region Levels: 2 northeast, 3 mid-west, 4 south, 5 west 3.768 1.015
Race Levels: 2 white, 3 black, 4 native American, 5 others 2.477 0.895

Health Levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor 6.287 1.082
Visits.hosp Equal to 1 if at least one visit to hospital outpatient departments 0.136 0.342

Table 1: Summary description of the variables used in the econometric modeling. Source: 2008 medical expenditure panel survey (MEPS) data set.

(2)
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models. The first model as a univariate regression assumes 
independence of the three disease conditions, and captures 
the effects of BMI individually on each disease. The second 
specification acknowledges the potential interactions between 
the three metabolic diseases, and models them jointly, while 
assuming complete linearity of the effects of all parametrically 
entering co-variates. The third and last specification goes one 
step further to relax the linearity assumption in the previous 
two models, by specifying a general form for the parametrically 
entering numerical covariates “age”, “education”, and “income”. 
In doing so, the three models correspond respectively to “(1) 
the binary univariate probit model”, “(2) the fully parametric 
trivariate probit model”, “(3) the semi-parametric trivariate probit 
model”, with the results presented in Tables 2-4 respectively for 
diabetes, hypertension, and hyperlipidaemia. The value of these 
three specifications is in allowing us to test the robustness of 
the relationship between BMI and each of these three health 
conditions, to potential mi-specification problems.

Diabetes equation results
Starting with the results from the diabetes equation, as shown in 
Table 2, the second column contains the results of the univariate 
probit model, the third column those of the fully parametric 
trivariate probit model, and the fourth column presents the 
results of the semi-parametric trivariate probit model. The 

shown in equation (6).

( )* '
0 1 ,i i i i i i iD BMI g Xβ β β= + + +∈  1,2,3i =  	                                       (6)

Where everything is as previously defined for equation (1), 
with the only added exception being g(.) an unknown function 
to be estimated, along with the parameters of the model. This 
specification allows us to relax the linearity assumption of 
the former specification in regards to the numerical variables 
(risks factors), such as “age”, “education” and “income”. More 
specifically the unknown function g(.) will be represented as 
g(age, education, income). This choice is motivated by the fact 
that variables such as age, education, income are likely to have 
non-linear relationships with disease outcomes [52], because they 
embody productivity and life-cycle effects that are likely to have 
non-linear influences on disease prevalence. Imposing a priori 
linear relationship (or non-linear by simply using for example 
quadratic polynomials) could mean failing to capture the true 
and more complex relationships. Both the fully parametric model 
and semi-parametric model are estimated using the library in the 
R Statistical Software [52,53].

Results
Given the aim of the analysis, to evaluate the impact of BMI 
on the joint likelihood/incidence of diabetes, hypertension, 
hyperlipidaemia, we’ve specified and estimated three regression 

Diabetes Binary
Univariate Probit (1)

Fully-Parametric
Trivariate Probit (2)

Semi-Parametric
Trivariate Probit (3)

Const -4.484*** (0.149)† -4.572*** (0.147) -3.513*** (0.111)
BMI 0.043*** (0.002) 0.044*** (0.002) 0.044*** (0.002)
Age 0.034*** (0.001) 0.034*** (0.001) p-val <2e-16*** (edf=5.985)

Education -0.024*** (0.005) -0.022*** (0.005) p-val=13e-5*** (edf=1.662)
Income 0.000 (0.000) -0.000 (0.000) p-val=0.322 (edf=1.569)

Male 0.087** (0.032) 0.090*** (0.032) 0.090** (0.032)
Black 0.168*** (0.040) 0.170*** (0.040) 0.169*** (0.040)

Native Amer 0.415** (0.130) 0.426*** (0.127) 0.434*** (0.127)
Others 0.223*** (0.060) 0.224*** (0.060) 0.220*** (0.060)

Very Good 0.244*** (0.059) 0.249*** (0.058) 0.251*** (0.058)
Good 0.685*** (0.056) 0.678*** (0.055) 0.682*** (0.055)
Fair 0.971*** (0.062) 0.966*** (0.062) 0.971*** (0.062)

Poor 1.130*** (0.081) 1.124*** (0.081) 1.132*** (0.081)
Limitation -0.076 (0.048) -0.078 (0.048) -0.083 (0.048)
Midwest -0.135* (0.055) -0.137* (0.048) -0.138* (0.055)

South -0.032 (0.047) -0.034 (0.047) -0.034 (0.047)
West -0.006 (0.052) -0.010 (0.051) -0.013 (0.051)

Private 0.058 (0.038) 0.071 (0.038) -0.063 (0.038)
Visithosp 0.179*** (0.041) 0.171*** (0.041) 0.171*** (0.040)

θˆ12  - 0.276 0.278
   - (0.248, 0.321)†† (0.24, 0.315)

θˆ13  - 0.361 0.362
   - (0.327, 0.394) (0.328, 0.396)

θˆ23  - 0.353 0.356
   - (0.327, 0.383) (0.334, 0.387)

AIC  - 38384.34 38349.59

Table 2: Fully-parametric and semi-parametric trivariate probit estimates for the diabetes (†Standard deviation of the parameters in parentheses; 
††The 95% confidence intervals for the theta correlations; ***0.01% level significance; **1% level significance; *5% level significance).
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Hypertension Binary Univariate Probit (1) Fully-Parametric Trivariate Probit (2) Semi-Parametric Trivariate Probit (3)
Const -4.466*** (0.109)† -4.482*** (0.109) -2.766*** (0.081)
BMI 0.050*** (0.002) 0.050*** (0.002) 0.050*** (0.002)
Age 0.043*** (0.001) 0.043*** (0.001) p-val <2e-16*** (edf=2.585)

Education -0.030 (0.004) -0.004 (0.004) p-val=0.423 (edf=1.706)
Income 0.000* (0.000) -0.000* (0.000) p-val=0.038* (edf=1.116)

Male 0.161*** (0.023) 0.161*** (0.023) 0.161** (0.023)
Black -0.300*** (0.030) -0.300*** (0.030) -0.298*** (0.030)

Native Amer 0.260* (0.111) 0.253* 0.254* (0.109)
Others 0.116** (0.044) 0.116** (0.044) 0.119** (0.044)

Very Good 0.317***(0.033) 0.318*** (0.033) 0.318*** (0.033)
Good 0.529*** (0.034) 0.527*** (0.034) 0.528*** (0.034)
Fair 0.888*** (0.043) 0.886*** (0.043) 0.888*** (0.043)
Poor 0.119*** (0.067) 0.120*** (0.066) 0.124*** (0.067)

Limitation -0.126** (0.042) -0.130** (0.042) - 0.123** (0.042)
Midwest -0.093* (0.040) -0.089* (0.039) -0.090* (0.039)

South 0.031 (0.035) 0.034 (0.035) 0.033 (0.034)
West -0.085* (0.038) -0.085* (0.038) -0.083* (0.038)

Private 0.095*** (0.028) 0.0945*** (0.028) 0.096*** (0.028)
Visithosp 0.168*** (0.032) 0.164*** (0.032) 0.163*** (0.032)

θˆ12  - 0.276 0.278
  - (0.248, 0.321)†† (0.24, 0.315)

θˆ13  - 0.361 0.362
  - (0.327, 0.394) (0.328, 0.396)

θˆ23  - 0.353 0.356
  - (0.327, 0.383) (0.334, 0.387)

AIC  - 38384.34 38349.59

Table 3: Fully-parametric and semi-parametric trivariate probit estimates for the hypertension equation (†standard deviation of the parameters in 
parentheses; ††The 95% confidence intervals for the theta correlations; ***0.01% level significance; **1% level significance; *5% level significance).

correlation coefficients θˆ12=0.276, θˆ13=0.361, θˆ23=0.353 in the 
third column suggest that the processes leading to the incidence 
of diabetes, hypertension and hyperlipidaemia are significantly 
correlated as shown by their respective 95% confidence intervals 
(0.248, 0.321), (0.327, 0.394), (0.327, 0.383). These results suggest 
that the unobserved risk factors affecting the three diseases are 
positively correlated. As such, the independence assumption 
through the univariate probit formulation (as formerly adopted 
in the literature) is not as appropriate as the trivariate probit 
representation. Comparing now the fully parametric trivariate 
probit representation to the semi-parametric trivariate probit, 
we note that the latter is a better model based on the AIC criteria 
(AI Cfull=38384.34>AI Csemi=38349.59). These results suggest that 
relaxing the independence assumption, along with the linearity 
assumption for the parametrically entering numerical risk factors 
(covariates) yield a better model for the description of diabetes 
incidence.

Focusing on our primary independent variable of interest, 
BMI, its effect on the incidence of diabetes is fairly stable and 
consistent across all three specifications. The statistically 
significant coefficient value of 0.044 on our preferred model in 
the fourth column of Table 2 suggests that a one unit increase in 

BMI raises the likelihood of the respondent developing diabetes 
by 4.4%. With regards to the other risk factors (variables) 
entering the diabetes equation parametrically, the results in 
the fourth column of Table 2 suggests that: Male respondents 
have 9.0% more chances of being diagnosed with diabetes 
compared to females. Blacks, native Americans, and other races 
have respectively 16.9%, 43.4%, and 22% more chances of 
developing diabetes than whites. Compared to respondents with 
excellent health conditions, those with very good, good, fair, and 
poor health conditions have respectively 25.1%, 68.2%, 97.1% 
and 113.2% more chances of being diagnosed with diabetes. 
The coefficient value of -0.083 suggests that respondents for 
which health limits physical activities have relatively 8.3% less 
chances of being diagnosed with diabetes. The regional dummy 
variables suggest that compared to respondents from the 
northeast of the US, those living in the midwest, south, and west 
have respectively 13.8%, 3.4%, and 1.3% less chances of being 
diagnosed with diabetes. The coefficient value of -0.063 suggests 
that respondents with private health insurance coverage have 
6.3% less chances of being diagnosed with diabetes compared 
to those who do not have private coverage. Finally, respondents 
with at least one visit to hospital outpatient departments have 
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17.1% more chances of being diagnosed with diabetes.

For the smoothed numerical risk factors (variables) “age”, 
“education” and “income”, calculated as discussed in section 
2.3, the results in the fourth column of Table 2 suggest that only 
“age” and “education” with p-values (<0.05), have statistically 
significant effects on the incidence of diabetes [52]. These results 
are also supported by the smooth function estimates and 95% 
confidence bands on the variables as shown in Figure 1. In fact, 
the figure suggests that as age increases, the likelihood of being 
diagnosed with diabetes increases. On the other hand, as the 
number of years of education increases the likelihood of being 
diagnosed with diabetes decreases.

Hypertension equation results
Moving to the results from the hypertension equation, as shown in 
Table 3, the second column contains the results of the univariate 
probit model, the third column those of the fully parametric 
trivariate probit model, and the fourth column presents the 
results of the semi-parametric trivariate probit model.

As previously mentioned for the diabetes equation, the 
statistically significant correlation co-efficients θˆ12=0.276, 
θˆ13=0.361, θˆ23=0.353, along with the AIC criteria (AICfull=3838
4.34>AICsemi=38349.59) suggest that relaxing the independence 
assumption, along with the linearity assumption for the 
parametrically entering numerical risk factors yield a better 

model for the description of hypertension incidence among 2008 
MEPS respondents.

Focusing on our primary independent variable of interest, 
BMI, its effect on the incidence of hypertension is fairly stable 
and consistent across all three specifications. The statistically 
significant coefficient value of 0.050 on our preferred model in 
the fourth column of Table 3 implies that a one unit increase 
in BMI raises the likelihood of the respondent being diagnosed 
with hypertension by 5.0%. With regards to the other risk factors 
entering the hypertension equation parametrically, the results in 
the fourth column of Table 3 suggests that: Male respondents 
have 16.1% more chances of being diagnosed with hypertension 
than females. Blacks, native Americans, and other races 
have respectively 29.8%, 25.4%, and 11.9% more chances of 
developing hypertension than whites. Compared to respondents 
with excellent health conditions, those with very good, good, 
fair, and poor health conditions have respectively 31.8%, 52.8%, 
88.8% and 112.4% more chances of developing hypertension. 
The coefficient value of -0.123 suggest that respondents for 
which health limits physical activities have relatively 12.3% less 
chances of being diagnosed with hypertension. The regional 
dummy variables suggest that compared to respondents from 
the northeast of the US, those living in the midwest and the west 
have respectively 9.0% and 8.3% less chances of being diagnosed 
with hypertension, while those living in the south have 3.4% more 
chances of being diagnosed with hypertension. The coefficient 

Hyperlipidaemia Binary Univariate Probit (1) Fully-Parametric Trivariate Probit (2) Semi-Parametric Trivariate Probit (3)
Const -3.989*** (0.106)† -3.985*** (0.106) -2.061*** (0.080)
BMI 0.028*** (0.002) 0.028*** (0.002) 0.027*** (0.002)
Age 0.043*** (0.001) 0.043*** (0.001) p-val <2e-16*** (edf=3.787)

Education 0.012** (0.004) -0.013** (0.004) p-val=0.003** (edf=2.560)
Income 0.000** (0.000) -0.000** (0.000) p-val=0.044 (edf=1.400)

Male 0.189*** (0.023) 0.185*** (0.023) 0.186** (0.023)
Black -0.130*** (0.031) -0.131*** (0.031) -0.125*** (0.031)

Native Amer 0.110 (0.112) 0.113 (0.111) 0.113 (0.112)
Others 0.131** (0.041) 0.131** (0.041) 0.125** (0.041)

Very Good 0.271*** (0.032) 0.270*** (0.032) 0.269*** (0.032)
Good 0.428*** (0.033) 0.422*** (0.033) 0.420*** (0.033)
Fair 0.765*** (0.043) 0.763*** (0.043) 0.760*** (0.043)
Poor 0.806*** (0.065) 0.806*** (0.065) 0.797*** (0.065)

Limitation -0.098* (0.041) -0.102* (0.041) - 0.114** (0.041)
Midwest -0.104** (0.039) -0.102** (0.039) -0.101** (0.041)

South 0.019 (0.034) 0.019 (0.034) 0.018 (0.034)
West -0.055 (0.037) -0.056 (0.036) -0.060 (0.037)

Private 0.164*** (0.028) 0.165*** (0.028) 0.161*** (0.028)
Visithosp 0.288*** (0.031) 0.287*** (0.031) 0.290*** (0.031)

θˆ12  - 0.276 0.278
   - (0.248, 0.321)†† (0.24, 0.315)

θˆ13  - 0.361 0.362
   - (0.327, 0.394) (0.328, 0.396)

θˆ23  - 0.353 0.356
   - (0.327, 0.383) (0.334, 0.387)

AIC  - 38384.34 38349.59

Table 4: Fully-parametric and semi-parametric trivariate probit estimates for the hyperlipidaemia equation (†Standard deviation of the parameters in 
parentheses; ††The 95% confidence intervals for the theta correlations; ***0.01% level significance; **1% level significance; *5% level significance).
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value of 0.096 suggests that respondents with private health 
insurance coverage have 9.6% more chances of being diagnosed 
with hypertension than those who do not have private coverage. 
Finally, respondents with at least one visit to hospital outpatient 
departments have 16.3% more chances of being diagnosed with 
hypertension.

For the smoothed numerical risk factors “age”, “education” 
and “income”, calculated as discussed in section 2.3 [47], the 
results in the fourth column of Table 3 suggest that only “age” 
and “income” with p-values (<0.05), have statistically significant 
effects on the incidence of hypertension. These results are also 
supported by the smooth function estimates and 95% confidence 
bands on the variables as shown in Figure 2. In fact, the figure 
suggests that as age increases, the likelihood of being diagnosed 
with hypertension increases. On the other hand, as income 
increases the likelihood of being diagnosed with hypertension 
decreases.

Hyperlipidaemia equation results
The results from the hyperlipidaemia equation are shown in 
Table 4, the second column contains the results of the univariate 
probit model, the third column those of the fully parametric 
trivariate probit model, and the fourth column presents the 
results of the semi-parametric trivariate probit model. As 
previously mentioned for the diabetes and hypertension 
equations, the statistically significant correlation coefficients 
θˆ12=0.276, θˆ13=0.361, θˆ23=0.353, along with the AIC criteria 
(AICfull=38384.34>AICsemi=38349.59) suggest that relaxing the 
independence assumption, along with the linearity assumption 
for the parametrically entering numerical risk factors yield a 
better model for the description of hyperlipidaemia incidence 
among 2008 MEPS respondents. As such, this model is our 
preferred model in this analysis.

Focusing on our primary independent variable of interest, BMI, 
its effect on the incidence of hyperlipidaemia is fairly stable 
and consistent across all three specifications. The statistically 
significant coefficient value of 0.027 on our preferred model in 
the fourth column of Table 4 suggests that a one unit increase 
in BMI raises the likelihood of the respondent developing 
hyperlipidaemia by 2.7%. With regards to the other risk factors 
entering the diabetes equation parametrically, the results in 
the fourth column of Table 4 suggests that: Male respondents 
have 18.6% more chances of developing hyperlipidaemia than 
females. Compared to whites, blacks have 12.5% less chances of 
being diagnosed with hyperlipidaemia, while other races except 
for native Americans have 12.5% more chances of developing 
hyperlipidaemia than whites. Compared to respondents with 
excellent health conditions, those with very good, good, fair, and 
poor health conditions have respectively 26.9%, 42.0%, 76.0% 
and 79.7% more chances of developing hyperlipidaemia. The 
coefficient value of -0.114 suggest that respondents for which 
health limits physical activities have relatively 11.4% less chances 
of being diagnosed with hyperlipidaemia.

The regional dummy variables suggest that compared to 
respondents from the northeast of the US, those living in the 
midwest and the west have respectively 10.1% and 6.0% less 

chances of being diagnosed with hyperlipidaemia, while those 
living in the south have 1.8% more chances of being diagnosed 
with hyperlipidaemia. The coefficient value of 0.161 suggests that 
respondents with private health insurance coverage have 16.1% 
more chances of being diagnosed with hyperlipidaemia than 
those who do not have private coverage. Finally, respondents 
with at least one visit to hospital outpatient departments have 
29.0% more chances of being diagnosed with hyperlipidaemia.

For the smoothed numerical risk factors “age”, “education” and 
“income”, calculated as discussed in section 2.3, the results in the 
fourth column of Table 2 suggest that only “age” and “education” 
with p-values (<0.05), have statistically significant effects on the 
incidence of hyperlipidaemia. These results are also supported 
by the smooth function estimates and 95% confidence bands on 
the variables as shown in Figure 3. In fact, the figure suggests 
that as age increases, the likelihood of being diagnosed with 
hyperlipidaemia increases. On the other hand, as the number of 
years of education increases the likelihood of being diagnosed 
with hyperlipidaemia decreases.

Finally comparing the marginal effects of BMI across all three 
disease conditions, using the semi-parametric trivariate probit 
model estimates in the fourth columns of Tables 2-4 we can note 
that BMI has a relatively greater incidence on hypertension (5%), 
followed by diabetes (4.4%), and hyperlipidaemia (2.7%).

Conclusion
The motivation for this empirical analysis was the desire to 
understand the role that BMI plays in the joint likelihood 
of the three metabolic diseases of diabetes, hypertension, 
hyperlipidaemia. This was intended to test whether the 
independence assumption made by the past literature about 
the three disease processes is valid, and also to see if BMI has 
differing effects on them. To this end, the paper used three 
model specifications. The first was a univariate probit model, the 
second a fully-parametric trivariate probit model, and the third a 
semi-parametric trivariate probit model.

The study used data from the 2008 MEPS. The estimated 
correlation coefficients suggested that the unobserved risk 
factors affecting these three disease processes are positively 
related. Hence our semi-parametric bivariate probit specification 
is better model than the standard univariate probit which have 
been used by the past literature. In this past specification, 
the underlying assumption was that these processes are 
independent. However, as our estimations show taking into 
account the interdependencies in the processes generating 
those three metabolic diseases, allows for better more precise 
estimates of the marginal effects.

Furthermore, focusing on our preferred specification, it was 
shown that BMI has positive but differing marginal effects on the 
joint likelihood of diabetes, hypertension, and hyperlipidaemia. 
In fact, its marginal effect was found to be relatively greater 
on the incidence of hypertension, followed by diabetes, and 
then hyperlipidaemia. Overall, this study shed lights on the 
importance of joint modeling when investigating the incidence 
of potentially interrelated health conditions, so as to capture the 
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Figure 1 Smooth  function  estimates   and  95% confidence  bands  for the  numerical  covariates (age,  education, income) in the 
diabetes  equation.

Figure 2 Smooth  function  estimates   and  95% confidence  bands  for the  numerical  covariates (age,  education, income) in 
the hypertension equation.

natures and strengths of the relations between them. As such, 
future studies interested in the incidence of several diseases 
in a given population, should consider our presented modeling 

framework, as opposed to the single equation framework as has 
been accustomed in the literature.
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Figure 3 Smooth  function  estimates   and  95% confidence  bands  for the  numerical  covariates (age,  education, income) in the 
hyperlipidaemia equation.
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