
2021
Vol. 9 No. 9: 109

iMedPub Journals
http://www.imedpub.com

Review Article

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://colorectal-cancer.imedpub.com/archive.php

American Journal of Computer
Science and Information Technology

Scaling Data Intensive Testing of Embedded
System with a Slight Look at Mobile Devices

Abstract
Embedded systems have a highly increased penetration around the globe. Nearly
every 1 out of 5 persons deal with embedded systems not knowing. Innovations
are increasingly triggered by software embedded in automotive, transportation,
medical-equipment, communication, energy, and many other types of systems. To
test embedded software in an effective and efficient manner, a large number of
test techniques, approaches, tools and frameworks have been proposed by both
practitioners and researchers in the last several decades . This paper is a research
made on real time embedded system testing. This paper explains what is meant by
testing, embedded systems, faults in embedded systems, testing of the embedded
systems and an example of one of the embedded system- mobile embedded
applications. A little study is done on Mobile Embedded Systems as well as its
challenges, Future works on how Embedded Systems can still work not just with
Mobile phones now, but with other computer gadgets. This study is a brief and
concise one, not going into details about each segment of an embedded system.

Keywords: Software testing; embedded systems; embedded software; mobile
embedded systems; systematic mapping

Ayemowa Matthew1*, Ajayi
W2, Emmanuel Adediran3,
Iyanuoluwa Fatoki4 and
Alonge Opeyemi5

Department of Computer Science, Lead
City University, Faculty of Basic Medical
Sciences, Toll Gate, Ibadan, Nigeria

Corresponding author:
Ayemowa Matthew, Department of
Computer Science, Lead City University,
Faculty of Basic Medical Sciences, Toll Gate,
Ibadan, Nigeria

 E-mail: ayemowaodunayo@gmail.com

Citation: Matthew A, Ajayi W, Adediran
E, Fatoki I, Opeyemi A (2021) Scaling Data
Intensive Testing of Embedded System with
a Slight Look at Mobile Devices. Am J Compt
Sci Inform Technol Vol.9 No.9:109.

Introduction
Embedded Systems are ubiquitous. They appear in cell phones,
microwave ovens, refrigerators, automobiles and a veritable array
of consumer products. Some of these embedded systems have
potentially safety or security critical consequences. Embedded
systems exist in contexts where failure can be profound. Consider
fly by wire, chemical factories, nuclear power plants and even
offshore oil wells. Though embedded systems are already
ubiquitous, the adoption trajectory of the technology continues
unabated. Similar observations exist within the military realm.
From smart sensors, software fuses to the evolution of the battle
space to being network centric.

Software Testing is a process which is carried out to verify the
performance features of a Software product whether it matches
the expected requirement it was designed for, and to ensure it
is free from failures, bugs or defects. It involves various testing
components such as the Manual Testing and the automate
testing. Our study shall focus on Testing with automated tools to
evaluate one or more properties of interest. Real Time Most, if
not all, embedded systems are "real-time". The terms "real-time"
and "embedded" are often used interchangeably. A real-time
system is one in which the correctness of a computation not only
depends on its logical correctness, but also on the time at which
the result is produced.

Embedded Systems are electronically controlled systems where
both the hardware and the software of a computer device are

combined together to perform a specific task. Embedded Systems
are used also in both large and small systems. Embedded systems
basically consists of the hardware and application software and
also for larger devices, it has or makes use of Real Time Operating
System RTOS that supervises the application software as well
as providing mechanism allowing the processor runs a process
per schedule by following a stipulated guideline. RTOS defines
the way the system works. It sets the rules during the execution
of application program. When talking about the small scale
systems of embedded systems, it may not have RTOS. Hence, an
embedded system is a Microcontroller based, software driven,
reliable, real-time control system that performs a designed task
[1].

Objective
In this paper, our objective is to enable the black-box, automated
testing of RTES based on environment models. More precisely, our
goal is to make such environment modeling as easy as possible,
and allow the testers to automate test case and oracle generation
without any knowledge about the internal design of the RTES.

While embedded systems are computing systems, they can
range from having no User Interface (UI)-for example, on devices
designed to perform a single task to complex Graphical User
Interfaces (GUIs), such as in mobile devices. User interfaces can
include buttons, LEDs (Light Emitting Diodes) and touchscreen
sensing. Some systems use remote user interfaces as well.

Received: August 30, 2021; Accepted: September 13, 2021; Published: September
20, 2021

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php2

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 109

Literature Review
Embedded systems
Embedded systems are used to control a wide variety of dynamic
and complex applications, ranging from non-safety-critical
systems such as cellular phones, media players, and televisions,
to safety-critical systems such as automobiles, airplanes, and
medical devices. Embedded systems are also being produced at an
unprecedented rate, with over four billion units shipped in 2006.
An embedded system is a microcontroller or microprocessor
based system which is designed to perform a specific task. For
example, a fire alarm is an embedded system; it will sense only
smoke [2].

Systems components of embedded systems
Embedded systems vary in complexity but, generally, consist of
three main elements:

Hardware: The hardware of embedded systems is based around
microprocessors and microcontrollers. Microprocessors are very
similar to microcontrollers and, typically, refer to a CPU (central
processing unit) that is integrated with other basic computing
components such as memory chips and digital signal processors
(DSPs). Microcontrollers have those components built into one
chip.

Software and firmware: Software for embedded systems can
vary in complexity. However, industrial-grade microcontrollers
and embedded IoT systems usually run very simple software that
requires little memory.

Real-time operating system: These are not always included in
embedded systems, especially smaller-scale systems. RTOS (es)
define how the system works by supervising the software and
setting rules during program execution. RTOS supervises the
application software and provide mechanism to let the processor
run a process as per scheduling by following a plan to control
the latencies. RTOS defines the way the system works. It sets the
rules during the execution of application program. A small scale
embedded system may not have RTOS [3].

So we can define an embedded system as a Microcontroller
based, software driven, and reliable, real-time control system.

Structure of embedded systems
Basic structure of an embedded system (Figure 1).

Sensor: It measures the physical quantity and converts it to an
electrical signal which can be read by an observer or by any

electronic instrument like an A2D converter. A sensor stores the
measured quantity to the memory.

A-D Converter: An analog-to-digital converter converts the
analog signal sent by the sensor into a digital signal.

Processor and ASICs: Processors process the data to measure the
output and store it to the memory.

D-A Converter: A digital-to-analog converter converts the digital
data fed by the processor to analog data

Actuator: An actuator compares the output given by the D-A
Converter to the actual (expected) output stored in it and stores
the approved output [4].

Types of embedded systems
There are a few basic embedded system types, which differ in
their functional requirements. They are:

Mobile embedded systems: A small-sized systems that are
designed to be portable. Digital cameras are an example of this.

Networked embedded systems: They are connected to a
network to provide output to other systems. Examples include
home security systems and point of sale (POS) systems [5].

Standalone embedded systems: They dont reliant on a host
system. Like any embedded system, they perform a specialized
task. However, they do not necessarily belong to a host system,
unlike other embedded systems. A calculator or MP3 player is an
example of this.

Real-time embedded systems: They give the required output in
a defined time interval. They are often used in medical, industrial
and military sectors because they are responsible for time-critical
tasks. A traffic control system is an example of this.

Embedded systems can also be categorized by their performance
requirements:

Small-scale embedded systems: They often use no more than an
8-bit microcontroller.

Medium-scale embedded systems: They use a larger
microcontroller (16-32 bit) and often link microcontrollers
together [6].

Sophisticated-scale embedded systems: They often use several
algorithms that result in software and hardware complexities and
may require more complex software, a configurable processor
and/or a programmable logic array.

There are several common embedded system software
architectures, which become necessary as embedded systems
grow and become more complex in scale.

Simple control loops call subroutines: They manage a specific
part of the hardware or embedded programming.

Interrupt controlled systems: They have two loops: a main one
and a secondary one. Interruptions in the loops trigger tasks.

Cooperative multitasking: This is essentially a simple control loop
located in an application programming interface (API).

Figure 1: The basic structure of an embedded system.

2021

© Under License of Creative Commons Attribution 3.0 License 3

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 109

Preemptive multitasking or multithreading: This is often used
with an RTOS and features synchronization and task switching
strategies.

Functional types of embedded system
Single-functioned: An embedded system usually performs a
specialized operation and does the same repeatedly. For example:
A pager always functions as a pager [7].

Tightly constrained: All computing systems have constraints on
design metrics, but those on an embedded system can be especially
tight. Design metrics is a measure of an implementation's features
such as its cost, size, power, and performance. It must be of a size
to fit on a single chip, must perform fast enough to process data
in real time and consume minimum power to extend battery life.

Reactive and real time: Many embedded systems must
continually react to changes in the system's environment and
must compute certain results in real time without any delay.
Consider an example of a car cruise controller; it continually
monitors and reacts to speed and brake sensors. It must compute
acceleration or de-accelerations repeatedly within a limited time;
a delayed computation can result in failure to control of the car.

Microprocessors based: It must be microprocessor or
microcontroller based [8].

Memory: It must have a memory, as its software usually embeds
in ROM. It does not need any secondary memories in the
computer.

Connected It must have connected peripherals to connect input
and output devices.

HW-SW systems: Software is used for more features and
flexibility. Hardware is used for performance and security.

Examples of embedded systems
 Embedded systems are used in a wide range of technologies
across an array of industries. Some examples include:

Automobiles: Modern cars commonly consist of many computers
(sometimes as many as 100), or embedded systems, designed to
perform different tasks within the vehicle. Some of these systems
perform basic utility functions and others provide entertainment
or user-facing functions. Some embedded systems in consumer
vehicles include cruise control, backup sensors, suspension
control, navigation systems and airbag systems.

Mobile phones: These consist of many embedded systems,
including GUI software and hardware, operating systems (Oases),
cameras, microphones, and USB (Universal Serial Bus) I/O (input/
output) modules [9].

Industrial machines: They can contain embedded systems, like
sensors, and can be embedded systems themselves. Industrial
machines often have embedded automation systems that
perform specific monitoring and control functions.

Medical equipment: These may contain embedded systems
like sensors and control mechanisms. Medical equipment, such

as industrial machines, also must be very user-friendly so that
human health isn't jeopardized by preventable machine mistakes.
This means they'll often include a more complex OS and GUI
designed for an appropriate UI.

Characteristics of embedded systems
The main characteristic of embedded systems is
that they are task-specific
 Additionally, embedded systems can include the following
characteristics:

•	 It consists of hardware, software and firmware.

•	 It can be embedded in a larger system to perform a specific
function, as they are built for specialized tasks within the
system, but not various tasks.

•	 It can be either microprocessor-based or microcontroller-
based -- both are integrated circuits that give the system
compute power.

•	 Embedded systems are often used for sensing and real-time
computing in internet of things (IoT) devices, which are
devices that are internet-connected and do not require a
user to operate.

•	 It can as well vary in complexity and in function, which affects
the type of software, firmware and hardware they use.

•	 They are often required to perform their function under
a time constraint to keep the larger system functioning
properly [10].

Challenges in embedded software testing
Some of the challenges that one can face during embedded
software testing:

Hardware dependency: Hardware dependency is among the
main difficulties faced during embedded software testing
because of limited access to hardware. However, Emulators and
Simulators may not precisely represent the behavior of the actual
device and could give a wrong sense of system performance and
application's usability.

Open source software: The majority of the embedded software
components are open source in nature, not created in-house and
absence of complete test available for it. There is a wide range of
test combinations and resulting scenarios.

Software vs. hardware defects: Another aspect is when software
is being developed for a freshly created hardware, during this
process high ratio of hardware defects can be identified. The
found defect is just not limited to software. It may be related to
hardware also.

Reproducible defects: Defects are harder to reproduce/recreate
in the case of the embedded system. That enforces the embedded
testing procedure to value every defect occurrence substantially
higher than in a standard case, other than to gather as much
data as could sensibly be required to alter the system to find the
foundation of the defect.

2021

© Under License of Creative Commons Attribution 3.0 License 4

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 109

Continuous software updates: Embedded systems require
regular software updates like the kernel upgrade, security fixes,
different device drivers, etc. Constraints identified with the
software updates influence make bug identification difficult.
Additionally, it increases the significance of build and deployment
procedure [11].

Faults in embedded systems
Incorrectness in hardware systems may be described in different
terms as defect, error and faults. These three terms are quite bit
confusing. We will define these terms as follows

Defect: A defect in a hardware system is the unintended difference
between the implemented hardware and its intended design.
This may be a process defects, material defects, age defects or
package effects.

Error: A wrong output signal produced by a defective system
is called an error. An error is an “effect” whose cause is some
“defect”. Errors induce failures, that is, a deviation from
appropriate system behavior. If the failure can lead to an accident,
it is a hazard.

Fault: A representation of a “defect” at the abstraction level is
called a fault.

Faults are physical or logical defects in the design or
implementation of a device.

Debugging embedded systems	
Some programming languages run on microcontrollers with
enough efficiency that rudimentary interactive debugging is
available directly on the chip. Additionally, processors often
have CPU debuggers that can be controlled -- and, thus, control
program execution -- via a JTAG or similar debugging port.

In many instances, however, programmers need tools that attach
a separate debugging system to the target system via a serial or
other port. In this scenario, the programmer can see the source
code on the screen of a general-purpose computer, just as would
be the case in the debugging of software on a desktop computer.
A separate, frequently used approach is to run software on a PC
that emulates the physical chip in software. This is essentially
making it possible to debug the performance of the software as if
it were running on an actual physical chip.

Broadly speaking, embedded systems have received more
attention to testing and debugging because a great number of
devices using embedded controls are designed for use, especially
in situations where safety and reliability are top priorities [12].

Automated testing
The scope of automation is the area of your Application under
Test which will be automated. Following points help determine
scope:

• The features that are important for the business

• Scenarios which have a large amount of data

• Common functionalities across applications

• Technical feasibility

• The extent to which business components are reused

• The complexity of test cases

• Ability to use the same test cases for cross-browser testing

Types of automated testing
Smoke testing

• Unit testing

• Integration testing

• Functional testing

• Keyword testing

• Regression testing

• Data Driven testing

• Black box testing

Benefits of automation testing

• 70% faster than the manual testing

• Coverage of more application features

• Reliable in results

• Ensure consistency

• Saves time and cost

• Improves accuracy

• Less human dependent

• Increases efficiency

• Better speed in executing tests

• Re-usable test scripts

• Test frequently and thoroughly

• More automation cycle in execution

Testing of the embedded os and application for
embedded os
• Model-based testing

• Functional testing of the OS/embedded software

• Regression of the OS/embedded software

• Unit testing

• Mocking (emulation of external data sources and signals)

• Testing of the command stack (including testing floating point
operations)

• Testing components based on protocols (CAN, I2C, RS232,
RS245, TCP, REST)

• Testing of drivers for elements of embedded systems with
respect to specific OSes (Linux, RTOS, QNX)	

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php5

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 109

Direct testing of systems (hardware testing)
Model-based testing using a model for PLD and microcontrollers

• Spec-based testing

• Test-bench testing (testing systems on a test bench using
external carrier boards and sensors)

• Testing communications with external systems at the level of
interfaces and signals (sampling and analysis of input/output
signals)

• Testing based on modeling external signals (black box – SCPI,
VXI-11, or other wave form generator)

• White-box testing based on a component’s specification

• Load testing using an input stream of prepared data
(measurement of the performance of an MCU or cryptographic
coprocessors)

• Fault testing (supplying edge-case data , modeling crosstalk and
voltage surges for power circuits – from a carrier board)

When testing we use our internal tools to store and analyze data
(a Neuron-R system), but we use enterprise systems to generate
data. Storing and analyzing the test results using a Neuron-R
allows us to generate reports, view past results, and assess
aggregate metrics in real-time on a single chart, which makes
it possible to see the correlation between input and output
parameters. This is an important ability when testing embedded
systems and devices.

Test case representation
Test Case Representation In our context, a test case execution is
akin to executing the environment simulator. The domain model
represents various components in the RTES environment. As
mentioned earlier, there can be multiple instances for each of
these environment components during simulation. For example,
in a gate controller RTES, we can have an environment component
representing trains in general. And then, during simulation, we
can simulate multiple trains where each simulated train will be
represented by an independent running instance of the train
environment component

On-line testing
On-line testing addresses the detection of operational faults, and
is found in computers that support critical or high-availability
applications11 The goal of on-line testing is to detect fault effects,
that is, errors, and take appropriate corrective action. On-line
testing can be performed by external or internal monitoring,
using either hardware or software; internal monitoring is referred
to as self-testing. Monitoring is internal if it takes place on the
same substrate as the circuit under test (CUT); nowadays, this
usually means inside a single IC—a system-on-a-chip (SOC).

There are four primary parameters to consider in the design of an
on-line testing scheme:

Error Coverage (EC): This is defined as the fraction of all modeled
errors that are detected, usually expressed in percent. Critical
and highly available systems require very good error detection
or error coverage to minimize the impact of errors that lead to
system failure [13].

Error Latency (EL): This is the difference between the first time
the error is activated and the first time it is detected. EL is affected
by the time taken to perform a test and by how often tests are
executed. A related parameter is fault latency (FL), defined as
the difference between the onset of the fault and its detection.
Clearly, FL ≥ EL, so when EL is difficult to determine, FL is often
used instead.

Space Redundancy (SR): This is the extra hardware or firmware
needed to perform on-line testing.

Time Redundancy (TR): This is the extra time needed to perform
on-line testing.

An ideal on-line testing scheme would have 100% error coverage,
error latency of 1 clock cycle, no space redundancy, and no time
redundancy. It would require no redesign of the CUT, and impose
no functional or structural restrictions on the CUT. To cover all of
the fault types described earlier, two different modes of on-line
testing are employed: concurrent testing which takes place during
normal system operation, and non-concurrent testing which
takes place while normal operation is temporarily suspended.
These operating modes must often be overlapped to provide a
comprehensive on-line testing strategy at acceptable cost [14].

Non-concurrent testing
This form of testing is either event-triggered (sporadic) or time-
triggered (periodic), and is characterized by low space and time
redundancy. Event-triggered testing is initiated by key events or
state changes in the life of a system, such as start-up or shutdown,
and its goal is to detect permanent faults. It is usually advisable
to detect and repair permanent faults as soon as possible. Event-
triggered tests resemble manufacturing tests.

Time-triggered testing is activated at predetermined times in the
operation of the system. It is often done periodically to detect
permanent faults using the same types of tests applied by event
triggered testing. This approach is especially useful in systems
that run for extended periods, where no significant events occur
that can trigger testing. Periodic testing is also essential for
detecting intermittent faults. Periodic testing can identify latent
design or manufacturing flaws that only appear under the right
environmental conditions [15].

Concurrent testing
Non-concurrent testing cannot detect transient or intermittent
faults whose effects disappear quickly. Concurrent testing, on
the other hand, continuously checks for errors due to such faults.
However, concurrent testing is not by itself particularly useful
for diagnosing the source of errors, so it is often combined with
diagnostic software. It may also be combined with non-concurrent
testing to detect or diagnose complex faults of all types.

2021

© Under License of Creative Commons Attribution 3.0 License 6

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 109

A common method of providing hardware support for concurrent
testing, especially for detecting control errors, is a watchdog
timer. This is a counter that must be reset by the system on a
repetitive basis to indicate that the system is functioning properly.
A watchdog timer is based on the assumption that the system is
fault-free—or at least alive—if it is able to perform the simple
task of resetting the timer at appropriate intervals, which implies
that control flow is correctly traversing timer reset points [16].

Interaction testing technique between hardware
and software in embedded systems
In embedded system where hardware and software are combined,
unexpected situation can occur owing to the interaction faults
between hardware and software. As the functions of embedded
system get more complicated, it gets more difficult to detect
faults that cause such troubles. Hence, Faults Injection Technique
is strongly recommended in a way it observes system behaviors
by injecting faults into target system so as to detect interaction
faults between hardware and software in embedded system.

The test data selection technique discussed in first simulates
behaviors of embedded system to software program from
requirement specification. Then hardware faults, after being
converted to software faults, are injected into the simulated
program. And finally, effective test data are selected to detect
faults caused by the interactions between hardware and software.

Conclusion
Embedded Systems are good but they come with their diver’s
problems, this study has helped shed more light to their
management and testing. Modular test techniques for digital,
mixed-signal, and hierarchical SOCs must develop further to keep
pace with design complexity and integration density. The test
data bandwidth needs for analog cores are significantly different
than that for digital cores; therefore unified top-level testing of
mixed-signal SOCs remains major challenge.

References
1	 Abbors F, Aho VM, Koivulainen J, Teittinen R (2017) Applying

Model-Based Testing in the Telecommunication Domain
and Dragos Truscan. In Model-Based Testing for Embedded
Systems. 19: 515-552.

2	 Galster M, Weyns D, Tang A, Kazman R, Mirakhorli M (2018)
From Craft to Science: The Road Ahead for Empirical Software
Engineering Research.IEEE/ACM International Conference on
Software Engineering: New Ideas and Emerging Technologies
Results (ICSE-NIER) 27: 77-80.

3	 Kitchenham B, Charters S (2007) Guidelines for performing
systematic literature reviews in software engineering.

4	 Ebert C, Jones C (2009) Embedded software: Facts, figures,
and future. Computer 42: 42-52.

5	 Murphy C, Zoomkawalla Z, Narita K (2013) Automatic test case
generation and test suite reduction for closed-loop controller
software.

6	 Lo D, Nagappan N, Zimmermann T (2015) How Practitioners
Perceive the Relevance of Software Engineering Research.
Joint Meeting on Foundations of Software Engineering 30:
415-425.

7	 Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines
for conducting systematic mapping studies in software
engineering: An update. Inf Softw Technol 64: 1-8.

8	 Burford MA, Belli F (1984) CADAS: A tool for designing reliable
embedded software and supporting testing “in the large”. In
Fehlertolerierende Rechensysteme 12: 101-112.

9	 van Schooenderwoert N, Morsicato R (2004) Taming the
embedded tiger-agile test techniques for embedded software.
In Agile Development Conference 9: 120-126.

10	 Offutt J, Ammann P (2008) Introduction to software testing.
Cambridge: Cambridge University Press.

11	 Doğan S, Betin-Can A, Garousi V (2014) Web application
testing: A systematic literature review. J Syst Softw 91: 174-
201.

12	 Dyba T, Dingsoyr T (2009) What do we know about agile
software development? IEEE Software 26: 6-9.

13	 Hall T, Sharp H, Beecham S, Baddoo N, Robinson H (2008)
What do we know about developer motivation? IEEE Software
25:92-94.

14	 Yusifoğlu VG, Amannejad Y, Can AB (2015) Software test-code
engineering: A systematic mapping. Inf Softw Technol 58:
123-147.

15	 Garousi V, Elberzhager F (2017) Test automation: Not just for
test execution. IEEE Software 34: 90-96.

16	 Lin YD, Chu ET, Yu SC, Lai YC (2013) Improving the accuracy of
automated GUI testing for embedded systems. IEEE Software
31: 39-45.

https://doi.org/10.1109/MC.2009.118
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-642-69698-5_9
https://doi.org/10.1109/ADEVC.2004.21
https://doi.org/10.1016/j.jss.2014.01.010
https://doi.org/10.1109/MS.2009.145
https://doi.org/10.1109/MS.2008.105
https://doi.org/10.1016/j.infsof.2014.06.009
https://doi.org/10.1109/MS.2017.34
https://doi.org/10.1109/MS.2013.100

