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Abstract
Enzymes have been used traditionally in the production and 
treatment of various food products. Recently, enzymes are 
recombinantly expressed in an appropriate host and are 
frequently designed to a targeted application by protein 
engineering methods. Human chromosomes are topped by 
telomeres that recruit the telomere-binding proteins and 
short telomeres result in genome instability and cell death. 
Human telomerase is a rare endogenous enzyme. Four 
domains namely C-Terminal Extension (CTE), Reverse 
Transcriptase domain (RT), high-affinity RNA-binding domain 
(TRBD), and N-Terminal (TEN) domain collectively compose 
Telomerase Reverse Transcriptase (TERT). Telomerase is a 
vital factor for normal tissues renewal and long-term 
proliferation of cancer and stem cell lines. The role of 
telomerase in apoptosis regulation is also evident in a 
telomere maintenance-independent manner. In conclusion, 
the telomerase play key role in aging phenotypes in addition 
to carcinogenesis by regulating telomere length.
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Introduction
Enzymes are the biocatalysts that accelerate the biological

reaction at a faster rate. Besides the living system, they have
been used since prehistoric times for manufacturing food and
beverage. Traditionally the treatment of food and beverages’
products was carried out with microorganisms without knowing
that those microbes use their enzymes which are involved in the
preservation or improvement of food or the manufacturing of
desired compounds and aromas. In approximately 3,500 BC,
beer was produced in Mesopotamia and Asia, and bacterial
amylases and proteases were the significant enzymes for the
production of soybean derived foods. Present-day biocatalysis
uses isolated enzymes, which are recombinant expressed in an
appropriate microbial host; frequently they are designed to a
targeted application by protein engineering methods. A new

emergent wave around the 1980s acquired advantage of
recombinant gene technology that facilitated the cloning and
expression of the enzyme of interest in a suitable microbial host.
Researchers could then also improve the enzyme chemistry and
its properties subjected to site-directed mutagenesis. A step
ahead, in the 1990s, the new and advanced protein engineering
methods were established such as DNA altering and error-prone
Polymerase Chain Reaction (PCR) along with high-throughput
sequencing and screening methods which could be called a
directed evolution [1]. Bornscheuer et al emphasize what has
been achieved: “In the past, an enzyme-based process was
designed around the limitations of the enzyme; today, the
enzyme is engineered to fit the process specification” [2].

Linear eukaryotic chromosomes including human are topped
by telomeres that recruit the telomere-binding proteins. These
telomere-binding proteins are critical to differentiate telomeres
from DNA breaks and therefore to avoid telomere end-resection
and interchromosomal fusions [3,4]. Owing to inherently
incomplete genome replication, telomeres are progressively
shortened in each cell cycle [5]. Critically short telomeres result
in genome instability and cell death [6,7]. To compensate for this
sequence loss, a specialized reverse transcriptase, telomerase,
adds telomeric repeats to the chromosome 3′ end, using TERT
and an integral Telomerase RNA subunit (TER) with an internal
template for repeat synthesis [8]. Human telomerase activation
in embryogenesis and its repression in somatic tissues govern
cellular renewal capacity, with telomerase deficiency imposing
hematopoietic and epithelial failures and aberrant telomerase
activation enabling tumorigenesis [9].

Literature Review

Electron microscopic structure and chemistry
In human telomerase is rarely endogenous. Most of the

studies evident that human telomerase is limited to TERT8 and
TER (human hTR) overexpression. An hTR domain template with
its adjacent pseudoknot (t/PK) is considered crucial for activity
along with second 4/5(CR4/5) conserved region domain
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organized by P5 and P6 branched junction and stem loop P6.1.
All these hTR domains, TERT, and cellular holoenzyme with its
repeat addition characteristics sufficiently reconstruct
telomerase activity [10]. Four domains namely C-Terminal
Extension (CTE), Reverse Transcriptase domain (RT), high-affinity
RNA-Binding Domain (TRBD), and N-Terminal (TEN) domain
collectively compose TERT. The first three domains form ring and
formally known as TERT ring but high-resolution structure
analysis of TERT from certain insects like flour beetle Tribolium
castaneum revealed the absence of the TEN domain [11]. In
such organisms, the TERT ring binds to primer-template duplex
but the TERT ring in human supports the synthesis of single
repeat [12]. Heterogeneous complexes are resulted in combined
overexpression of purification of both TERT and hTR but only a
few of them were found to be catalytically active [13]. The exact
mechanism of catalytically active enzyme prerequisite remain
unclear that either a TERT/hTR dimer or each subunit with only
its monomer is required [14-16]. The overall structural layout of
telomerase holoenzyme in ciliate Tetrahymena thermophile
revealed monomeric TERT-TER catalytic core through landmark 9
A cryo-Electron    Microscopy    (cryo-EM)    [17].   This   is    the
considerable dissimilarity among Tetrahymena and human
telomerase holoenzyme in subunit composition but the
information about this enzyme in the case of humans is limited
to 30 A negative-stain electron microscopy reconstruction.

A recent study characterized the structure and the
composition of the human telomerase holoenzyme sub-
nanometer resolution showing two flexibly RNA-tethered lobes:
The catalytic core with Telomerase Reverse Transcriptase (TERT)
and conserved motifs of telomerase RNA (hTR), and an H/ACA
Ribonucleoprotein (RNP). In the catalytic core, RNA encircles
TERT, adopting a well-ordered tertiary structure with surprisingly
limited protein-RNA interactions. The H/ACA RNP lobe
comprises two sets of heterotetrameric H/ACA proteins and one
Cajal body protein, TCAB1, representing a pioneering structure
of a large eukaryotic family of ribosome and spliceosome
biogenesis factors. They also obtained negative-stain  Electron
Microscopy (cryo-EM) reconstructions at 7.7 A and 8.2 A
resolution for the catalytic core and H/ACA lobes, respectively,
and of the entire holoenzyme at 10.2 A resolution.

Other subunits of telomerase
Additional telomerase subunits also include Dyskerin (DKC)

and Nop10 with 58 kDa and 7.7 kDa molecular weights
respectively. But both of these subunits are collectively vital for
telomerase holoenzyme and are not found to be essential for in
vitro activity of telomerase [18,19]. However, DKC subunit is
essential for the stabilization of TERC for in vivo telomerase
activity [20]. DKC was also found useful for the proper
functioning of ribosomes as well as the biogenesis of p53 [21].
Additional subunits including Pontin and Reptin have their
importance for DNA repair and chromatin remodeling [22]. All
these subunits function in collaboration with TERC to regulate of
activity of telomerase for telomerase assembly and stability in
vivo [23].

Vital telomerase functions in the cell
In mammals, the telomerase acts as specific reverse

transcriptase and maintains telomeric length [24]. In human
catalytic subunit, hTERT and an RNA component (hRT) a
compose ribonucleoprotein telomerase holoenzyme. This
complex acts as a template and directs accessory species specific
proteins  and  at  the  end  of  the  telomeric   DNA   add  a   short
repetitive sequence dTTAGGG [25]. Telomerase biogenesis and
subcellular localization in addition to in vivo functioning are few
major roles performed by these accessory proteins. hRT and
dyskerin stability is imparted by reptin and pontin ATPases in
vivo. In recent models, this reptin and pontin jointly form the
scaffold which assembles ribonucleoprotein particle of
telomerase and stabilize hTR. After formation of this complex
the scaffold formed by pontin and reptin is believed to be
disassembled hence losing the catalytic ability of the active
enzyme by releasing these enzymes which were catalytically
active [26]. TCABI which is recently been discovered which
regulates the location of telomerase at the subcellular level [27].
In a study evidences were also shown to prove that holoenzyme
of human telomerase contains only dyskerin, hTR and TERT, still
others do not shows consistent results to this fact.

Dyskerin protein along with its close association to telomerase
is a nucleolar protein with highly conserved biochemistry and is
considered as specific nucleolar RNP. In spliceosomal snRNA and
newly synthesized ribosomal RNAs is acts as a catalyst for
pseudouridylation of specific residues. Reptin and pontin have
multiple roles along with already mentioned functionality on
chromatin remodeling and transcriptional regulation,
telomerase activity and DNA repair. Certain oncogenic factors
including c-myc and β-catenin were found to regulate their
oncogenic functions through interactions of these proteins.
Within the telomerase holoenzyme still there is huge gap to
understand the significance of the intricate network of protein-
nucleic acid and protein-protein interactions at molecular and
biochemical level. Furthermore, the pattern of holoenzyme
modification in its composition during different stages of cell
cycle is important mechanism to investigate and explain [28].

Telomerase is vital factor for normal tissues renewal and long
term proliferation of cancer and stem cell lines. However,
additional functions are described far beyond telomeric level.
TERT also acts as transcriptional regulator in number of
pathways such as Wnt-β-catenin signaling pathway [29]. Through
interactions with BRG1 (SWI/SNF related chromatin remodeling
protein) it functions in a β-catenin transcriptional complex as a
cofactor. Additional TERT functions as RNA-dependent RNA
polymerase in a complex with RMRP [30]. This TERT-RMRP
complex functions as RNA-dependent RNA polymerase or RDRP
and process single stranded RMRP into dsRNA which is followed
by endoribonuclease Dicer processing into siRNA or small
interfering RNA which interfere RMRP endogenous level. In
short the whole TERT-RMRP-RDRP acts through negative
feedback mechanism to control RMRP level. In some studies role
of telomerase in apoptosis regulation is also evident in a
telomere maintenance-independent manner [31].
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Telomerase activity in cancer and aging
During cellular differentiation due to TERT transcriptional

silencing benign tissues and human somatic cells shows limited
life spam as their telomerase activity is very low even
undetectable [32]. However in case of stem cells as well as adult
germ tissues about 80%-90% or above telomerase activity is
observed    [33,34].   This finding supports the argument that
cancer stem line give rise to cancerous cells additional evidences
are also present that cancerous cells are originated from somatic
cells acquiring stem cell properties or during de-differentiation
of progenitor cells [35,36].

Various transcription factors including E-Twenty Six (ETS)
family members β-Catenin, C-MYC, p53, E2F, HIF1, NF-kB, AP1,
SP1, p21 get attached to various binding sites on TERT promotor
[37-42]. Addition to these transcription factors, TERT expression
is also regulated by certain hormone receptor-mediated
signaling pathways such as Estrogen Receptor (ER)-signaling
[43]. In cancers, some of these transcription regulatory factors
govern TERT expression, distinct cancers is evident with TERT
promoter recurrent mutations ensuing new transcription
regulators binding. First in familial and sporadic melanoma the
recurrent germline and somatic mutations in promoter region of
TERT were identified respectively. Both of these mutations have
been resulted in de novo organization of ETS family of
transcription factors binding motifs. Somatic TERT promoter
mutations are more common as compared to germline
mutations in most common cancer types including urothelial
cancers, hepatocellular carcinomas, thyroid cancers, including
glioblastoma, bladder cancers and human melanoma [44].

During carcinogenesis the neoplastic cells enables them self
to multiply ad libitum due to reactivation of telomerase hence
acquires necessary genetic variations required for malignant
development. Moreover in case of normal stem cells which
possess sufficient telomerase activity shows gradual decrease or
complete loss of telomerase expression resulting aging and stem
cell differentiation [45]. In such stem and somatic cells telomere
shortening is one of the major indication for aging and
determinant factor for cellular longevity [46]. In vivo this
telomerase activity is restored by telomerase expression which
demonstrated sufficient results in phenotypic regulation of age
related signs [47]. In conclusion, the telomerase play key role in
aging phenotypes in addition to carcinogenesis by regulating
telomere length.

Tissue regeneration and development
During embryonic development of rodents readily detectable

activity of telomerase can be seen in their hearts but postnatally
being inactivated rapidly [48]. One of key factors limiting activity
of telomerase is TERT transcription [49]. Reduced telomerase
activity with decreased expression of TERT rightly reflects
reduced number of cardiac cells with positive TERT. Limited
knowledge is available for mechanism of down regulation of
TERT expression in cardiac cells after birth and offers potential
area for research. In a recent study to find out the telomerase
role in telomerase dysfunction in heart regulation scientists

developed a cryoinjury protocol in which neonatal hearts was
damaged after one day age.

After neonatal mice cardiac injury results of this study
indicated the necessity of ample telomere reserves for
proliferation of cardiomyocyte and efficient heart regeneration.
Mechanism of forced expression was applied both in new borne
and adult individuals and consistent results were found with scar
size, reduces apoptosis, cardiac dilation, improved post-MI heart
function and survival [50]. The post-acute MI telomerase
therapy is found to be cardio-protective in adult mice [51]. Such
findings predict about artificial telomerase expression ant its
potential towards post cardiac injury to ameliorate heart failure.
However, neonatal heart regeneration the consequence of
enforced telomerase expression leftovers unknown.

Role in diagnosis of fatal diseases
Patients with pneumonia, tuberculosis, neoplasms and

cardiac failure shows frequent complications such as pleural
effusion [52]. Malignant tumors are one of the major causes of
pleural effusion and metastatic diseases causes 90% of these
Malignant Pleural Effusions (MPEs). Their etiologies are
necessary to elucidate but from benign to MPE differentiation
still remained a clinical challenge [53].

To improve the MPE diagnosis, a number of tumor markers
have been studied to improve the sensitivity and specificity.
Number of studies has explained diagnostic values for such
markers but scientists were failed to identify reliable marker
with both the features of high specificity and high sensitivity. So
using single marker for MPE diagnosis is highly regretted. Hence
new improved method and markers are still need to find for
more accurate diagnosis [53].

Conclusion
This contribution shows that the development of gene

technology not only enabled recombinant production of the
enzyme of interest but also paved the way for protein
engineering to tailor enzymes to better meet the demands
required for a given process. The more recent achievements in
metabolic engineering enable researchers to design entire
pathways in microorganisms to accomplish high-level production
of products at high titers starting from simple nutrients. In the
near future, many further examples are expected in this exciting
area of research, allowing the replacement of existing chemical
processes as well as inventing routes to new products based on
biocatalysis or biotransformation.
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