Pelagia Research Library
ISSN: 0976-8505
CODEN (USA) CSHIA5

Synthesis and SAR of methyl linked cyclohexyl thiophenyl triazoles for their Anti-Alzheimer activity

Rajendra D. Dighe *, Mahendra R. Shiradkar ${ }^{\text {a }}$, Sheetal S. Rohom ${ }^{\text {b }}$ and Prashant D. Dighe ${ }^{c}$
*Dr. Reddy's Laboratories, Bachupally, Hyderabad, Andhra Pradesh, India
${ }^{a}$ Dr. Reddy's Laboratories, Ameerpet, Hyderabad, Andhra Pradesh, India
${ }^{b}$ Sangamner College, Sangamner, Ahmednagar, Maharashtra, India
${ }^{c}$ Micro Labs Ltd, Micro, Kudulu, Bangalore, Karnataka, India

Abstract

The present study, a series of N-[3-(4-Amino-5-mercapto-4H-[1,2,4]triazol-3-ylmethyl)-4,5,6,7-tetrahydro-benzo(b)thiophen-2-yl]-2-substituted amide derivatives (2A-D) were synthesized in good yields and characterized. Evaluation of the SAR of substitution with-in these series has allowed the identification of a range of compounds which significantly reduce brain cdk5/p25 by scintillation proximate assay (SPA) method. The cdk5/p25 inhibitor data of the tested compounds indicated that $5 A, 5 I, 7 A, 7 B, 7 E, 7 I, 9 A$ and $9 E$ showed better activity out of which $9 A$ and $9 E$ shows equally selective versus cdk2.

Key Words: Thiophene, triazole, cdk5/p25, SPA, Alzheimer's disease.

INTRODUCTION

Cyclin-dependent kinase 5 (CDK5) plays an essential role in the development of the central nervous system during mammalian embryogenesis. In the adult, CDK5 is required for the maintenance of neuronal architecture. Its deregulation has profound cytotoxic effects and has been implicated in the development of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis,[1] and visual-spatial disorientation, for which no effective treatment exists today. Cyclin-dependent kinase 5 (CDK5) is a member of a family of prolinedirected serine/threonine kinases.[1-2] The serine/threonine kinase cdk5 along with its cofactor p25 [3] (or the longer cofactor, p35) has been supposed to hyperphosphorylate tau [4], leading to
the formation of paired helical filaments and deposition of cytotoxic neurofibrillary tangles [5] and thus responsible to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, stroke, or Huntington's disease.[6] Cdk5 also phosphorylates Dopamine and Cyclic AMP-Regulated Phosphorprotein (DARPP-32) at threonine 75 and is thus indicated in having a role in dopaminergic neurotransmission.[7] Inhibition of the anomalous cdk5/p25 complex is, therefore, a viable target for treating Alzheimer's disease by preventing tau hyperphosphorylation and neurofibrillary tangle formation. Literature survey reveals that thiophene derivatives [8] as the potential inhibitors of cdk5/p25 for the treatment of Alzheimer's disease and other neurodegenerative disorders.[9-15]

Based on this hypothesis, we embarked on a de novo cdk5/p25 inhibitor discovery program to find an orally bioavailable, high potency compound/s. Screening of an in-house database provided several hits with modest cdk5/p25 inhibitory activity, one of which was the clubbed triazolyl thiophene (IC50 $=46 \pm 2 \mathrm{nM}$).

In recent years, environmentally benign synthetic methods have received considerable attention and solvent free protocols are reported. A fast, highly efficient and eco-friendly solvent-free chemical transformation, for the synthesis of title compounds, under microwave irradiation, using acidic alumina is designed.

MATERIALS AND METHODS

General Procedures

The melting points were recorded on electrothermal apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra on a Bruker Avance 300 MHz instrument using CDCl_{3} as solvent using TMS as internal standard; the chemical shifts (δ are reported in ppm and coupling constants (J) are given in Hertz. Signal multiplicities are represented by s, d, t, ds, dd, m, and br s. Mass spectra were recorded on a Finnigan LCQ mass spectrometer. Microwave irradiation was carried out in Raga Scientific Microwave Systems, Model RG31L at 2450 MHz . Elemental analysis was performed on a Heracus CHN-Rapid Analyser. Analysis indicated by the symbols of the elements of functions was within $\pm 0.4 \%$ of the theoretical values. The purity of the compounds was checked on silica gel coated Al plates (Merck).

Compound 1A- 1D were prepared as per the reported method. [30-35, 37]

Spectral and microanalysis data for representative compounds

N'-[2-(2-Chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-yl]-hydrazine carbodithioic

 potassium salt (1A)Yield 86%; mp $213-215{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43-1.59$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.45-2.51 (t, 4H, cyclohexane $\mathrm{CH}_{2}, \mathrm{~J}=4.4 \mathrm{~Hz}$), $3.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.25-4.50$ $\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.21, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.52\right), 8.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 415\left(\mathrm{M}^{+}, 55\right), 376$ (32.4), 341 (53.7), 250 (100), 208 (12.8), 165 (7.2), 151 (31.6), 99 (27), 85 (15.6); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClKN}_{3} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, $37.53 ; \mathrm{H}, 3.63$; N, 10.10%. Found: C, $37.41 ; \mathrm{H}, 3.52 ; \mathrm{N}, 10.05 \%$.

Compound 2A-2D were prepared using cited methods.[33, 34, and 37]

Spectral and microanalysis data for representative compounds

N -[3-(4-Amino-5-mercapto-4H-[1,2,4]triazol-3-ylmethyl)-4,5,6,7-tetrahydro-benzo(b) thiophen-2-yl]-2-chloro-acetamide (2A)
Yield 76%; mp $254-256{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.53-1.68$ (m, 4H, cyclohexane), $2.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.20-2.42\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 3.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.76(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 4.15 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), $8.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 358\left(\mathrm{M}^{+}, 100\right), 323$ (67.8), 290 (19.2), 248 (44.8), 192 (10.1), 177 (23.6); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{OS}_{2}$: C, 43.63; H, 4.51; N, 19.57 \%. Found: C, 43.76; H, 4.47; N, 19.72%.

General preparation of 7-chloro-hepta-2,4,6-triynoic acid -\{3-[2-(2-substituted-amino) 4, 5, 6, 7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-mercapto-[1, 2, 4] triazol-4-yl]-amide (3A-L). [32, 33, 37]
The triazole (2) (1 mmol) in 20 ml of $10 \% \mathrm{NaOH}$ was treated drop wise with an equimolar amount of the 4 -chlorobenzoyl chloride at $0^{\circ} \mathrm{C}$, which was stirred for $30-45 \mathrm{~min}$. At the end of stirring, precipitate was observed. It was then filtered, washed thoroughly with water and crystallized.

Spectral and microanalysis data for representative compounds

7-chloro-hepta-2,4,6-triynoic acid -\{3-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo [b]thiophen-3-ylmethyl]-5-mercapto-[1,2,4]triazol-4-yl\}-amide (3A)
Yield 71%; mp $284-286{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.14-1.61$ (m, 4H, cyclohexane), 2.25-2.58 (t, 4H, cyclohexane $\mathrm{CH}_{2}, \mathrm{~J}=4.8 \mathrm{~Hz}$), $3.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}$), 7.12-7.36 (m, 4H, ArH), 8.06 (s, 2H, NH); MS m/z (\%): 496 ($\mathrm{M}^{+}, 100$), 494 (80), 457 (52), 373 (33.8), 296 (17), 268 (9.8), 280 (14.7), 289 (29.8), 246 (9.3), 220 (10.8), 164 (10.1), 98 (15.1), 85 (5.3); Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 48.39 ; H, 3.86; N, 14.11%. Found: C, 48.55; H, 3.98; N, 14.03%.

N -\{3-[2-(2-Chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-mercapto -[1, 2, 4] triazol-4-yl\}-benzamide (3E)
Yield 69%; mp $275-277{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.42-1.67$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.42-2.69 (t, 4H, cyclohexane $\mathrm{CH}_{2}, \mathrm{~J}=4.4 \mathrm{~Hz}$), $3.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}$), 7.11-7.68 (m, 5H, ArH), 8.05 (s, 2H, NH); MS m/z (\%): 462 (${ }^{+}, 68$), 427 (100), 426 (57), 378 (43.6), 301 (14), 285 (10.1), 246 (28.3), 220 (34.6), 164 (20.3), 98 (9), 85 (12.3); Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $52.00 ; \mathrm{H}, 4.36 ; \mathrm{N}, 15.16 \%$. Found: C, $52.13 ; \mathrm{H}, 4.50 ; \mathrm{N}, 15.20$ $\%$.

N-[3-(4-Acetylamino-5-mercapto-4H-[1, 2, 4] triazol-3-ylmethyl)-4, 5, 6, 7-tetrahydro-benzo [b]thiophen-2-yl]-2-chloro-acetamide (3I)
Yield 77%; mp $282-284{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38-1.61$ (m, 4H, cyclohexane), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48-2.56\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.6 \mathrm{~Hz}\right), 3.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.78(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 4.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), 8.08 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): $400\left(\mathrm{M}^{+}, 71\right), 365$ (73), 316 (54.6), 301 (34.2), 273 (100), 272 (10.4), 246 (25.9), 218 (18.5), 164 (5.8), 98 (42); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $45.05 ; \mathrm{H}, 4.54 ; \mathrm{N}, 17.51 \%$. Found: C, $45.16 ; \mathrm{H}, 4.34 ; \mathrm{N}, 17.69 \%$.

General preparation of N, N^{\prime}-(methylenebis\{sulfanedial-5\{3-[(2- substituted-amino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]\}-4H-[1,2,4]triazole-3,4-dial\})di-4-chlorobenzamide (4A-L). [9, 37]
The triazole (3) (1 mmol), diiodomethane (1.5 mmol) and $5.6 \mathrm{~g}(1 \mathrm{mmol})$ potassium hydroxide were dissolved in 20 ml of dichloromethane. To the said mixture acidic alumina (20 g) was added. Dichloromethane was evaporated in vacuos, and mixture was kept inside the alumina bath and irradiated for $5-6 \mathrm{~min}$ at the power level of 300 W . The mixture was cooled. The solid thus separated was dissolved in hot ethanol and filtered. After cooling, the filtrate gave the product as white.

Spectral and microanalysis data for representative compounds

N, N’-(methylenebis \{sulfanedial - 5\{3 - [(2 - chloro-acetylamino) - 4, 5, 6, 7-tetrahydro-benzo[b]thiophen-3-ylmethyl]\}-4H-[1, 2, 4] triazole-3,4-dial\}) di-4-chlorobenzamide (4A)
Yield 84%; mp $266-268{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31-1.60(\mathrm{~m}, 8 \mathrm{H}$, cyclohexane), 2.02-2.24 (t, 8 H , cyclohexane $\left.\mathrm{CH}_{2}, J=4.5 \mathrm{~Hz}\right), 3.81\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.18\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.62(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.15-7.36 (m, 8H, ArH), $8.04(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH})$; Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, 49.00; H, 3.81; N, 13.94 \%. Found: C, 49.11; H, 3.75; N, 13.99%.
\mathbf{N}, \mathbf{N} '-(methylenebis\{sulfanedial-5\{3-[(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b] thiophen-3-ylmethyl]\}-4H-[1,2,4]triazole-3,4-dial\})di-benzamide (4E)
Yield $79 \% ; \operatorname{mp} 278-280{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20-1.51$ ($\mathrm{m}, 8 \mathrm{H}$, cyclohexane), 2.21-2.39 (t, 8 H , cyclohexane $\mathrm{CH}_{2}, J=4.7 \mathrm{~Hz}$), $3.61\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.35(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{SCH}_{2}$), 7.18-7.55 (m, 10H, ArH), $8.05(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH})$; Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, 52.61 ; H, 4.31 ; N, 14.96 \%. Found: C, 52.58; H, 4.41; N, 14.82%.

N,N'-(methylenebis\{sulfanedial-5\{3-[(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b] thiophen-3-ylmethyl]\}-4H-[1,2,4]triazole-3,4-dial\})di-acetamide (4I)
Yield $89 \% ; \operatorname{mp} 259-261^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24-1.59$ ($\mathrm{m}, 8 \mathrm{H}$, cyclohexane), $2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.44-2.56\left(\mathrm{t}, 8 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.3 \mathrm{~Hz}\right), 3.61\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $7.98(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH})$; Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{~S}_{4}: \mathrm{C}, 45.86$; H, 4.47; N, 17.25%. Found: C, 45.78; H, 4.59; N, 17.18%.

General preparation of 7-chloro-hepta-2, 4, 6-triynoic acid \{3-[2-(2- substituted-amino)-4, 5, 6, 7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-cyanomethylsulfanyl-[1, 2, 4] triazol-4-ylf-amide (5A-L). [36, 37]
The triazole (3) (1 mmol) was mixed with $1.2 \mathrm{ml}(2 \mathrm{mmol})$ of chloroacetonitrile and dissolved in 25 ml of water. Neutralization with sodium carbonate gave a precipitate, which was filtered, washed with cold water ($2 \times 20 \mathrm{ml}$), and crystallized.

Spectral and microanalysis data for representative compounds

7-Chloro-hepta - 2, 4, 6-triynoic acid \{3-[2-(2-chloro-acetylamino) - 4, 5, 6, 7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-cyanomethylsulfanyl - [1, 2, 4] triazol-4-yl\}-amide (5A)
Yield $86 \% ; \operatorname{mp} 245-247{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.25-1.49(\mathrm{~m}, 4 \mathrm{H}$, cyclohexane), 2.51-2.68 (t, 4 H , cyclohexane $\left.\mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.42(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.17-7.41$ (m, 4H, ArH), $8.0(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 535\left(\mathrm{M}^{+}, 100\right), 480$ (21.9), 421(20.6), 324 (34.2), 310 (40.8), 254 (17.9), 83 (28.9), 69 (16.1), 55 (11.3); Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 49.35; H, 3.76; N, 15.69 \%. Found: C, $49.23 ; \mathrm{H}, 3.64 ; \mathrm{N}, 15.81 \%$.

N-\{3-[2-(2-Chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-cyanomethyl sulfanyl-[1, 2, 4] triazol-4-yl\}-benzamide (5E)
Yield 82%; mp $268-270{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38-1.55$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.44-2.62 (t, 4H, cyclohexane $\left.\mathrm{CH}_{2}, J=4.4 \mathrm{~Hz}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.22(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.13-7.56(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 501\left(\mathrm{M}^{+}, 54\right), 484(36), 425$ (100), 324 (9.3), 310 (12), 254 (28), 161 (32), 83 (40), 69 (7.9), 55 (14.6); Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 52.74; H, 4.22; N, 16.77 \%. Found: C, $52.67 ; \mathrm{H}, 4.31 ; \mathrm{N}, 16.68 \%$.

N-[3-(4-Acetylamino-5-cyanomethylsulfanyl-4H-[1, 2, 4] triazol-3-ylmethyl)-4, 5, 6, 7-tetrahydro-benzo[b]thiophen-2-yl]-2-chloro-acetamide (5I)
Yield 81%; mp $271-273{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34-1.52$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.44-2.62\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.2 \mathrm{~Hz}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), 4.22 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), 8.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): 439 ($\mathrm{M}^{+}, 49$), 422 (79), 363 (19), 328 (62.3), 287 (53.4), 272 (100), 258 (19.5), 216 (12.4), 160 (6.8), 83 (29), 69 (9.7), 55 (13); Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $46.52 ; \mathrm{H}, 4.36$; N, 19.15 \%. Found: C, 46.58; H, 4.28; N, 19.07 \%.

General preparation of [5-[2-(2-substituted-amino)-4, 5, 6, 7-tetrahydro-benzo[b] thiophen-3-ylmethyl]-4-(7-chloro-hepta-2, 4, 6-triynoylamino)-4H-[1, 2, 4] triazol-3-ylsulfanyl]-acetic acid methyl ester (6A-L).[9, 34-37]
A solution of triazole (3) (1 mmol), $0.4 \mathrm{~g}(1 \mathrm{mmol})$ of sodium hydroxide and methyl bromoacetate $1.53 \mathrm{~g}(1 \mathrm{mmol})$ was prepared. To this, acidic alumina was added in $1: 5$ equivalent of triazole. The reaction mixture was mixed, and mixture was kept inside the alumina bath and irradiated for $4-5 \mathrm{~min}$ at the power level of 300 W . The mixture was cooled and poured on ice. The soild thus separated was extracted with hot ethanol, filtered. After cooling, filtrate gave almost pure product.

Spectral and microanalysis data for representative compounds

[5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-4-(7-chloro-hepta-
2,4,6-triynoylamino)-4H-[1,2,4] triazol-3-ylsulfanyl]-acetic acid methyl ester (6A)
Yield $82 \% ; \operatorname{mp} 279-281{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41-1.68(\mathrm{~m}, 4 \mathrm{H}$, cyclohexane), 2.40-2.61 (t, 4 H , cyclohexane $\mathrm{CH}_{2}, J=4.1 \mathrm{~Hz}$), $3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.9(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.20-7.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.09$ (broad, $2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): $568\left(\mathrm{M}^{+}, 100\right), 509$ (14), 459 (12.3), 437 (11.3), 423 (7.2), 366 (7.7), 329 (79), 328 (10), 314 (19.5), 286 (7.9), 271 (31.6), 222 (10.5), 219 (5.7); Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 48.59; H, 4.08; N, 12.32 \%. Found: C, 48.47; H, 4.22; N, 12.16 \%.
\{4-Benzoylamino-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-yl methyl]-4H-[1, 2, 4]triazol-3-ylsulfanyl\}-acetic acid methyl ester (6E)
Yield 75%; mp $253-255{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61-1.84$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.38-2.51 (t, 4 H , cyclohexane $\left.\mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{SCH}_{2}$), $4.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.73-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.01$ (broad, $2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): $534\left(\mathrm{M}^{+}, 100\right), 476$ (21.9), 462 (24.6), 440 (34.2), 426 (39.8), 369 (17.9), 332 (11.3), 288 (5.8), 273 (4), 219 (3), 83 (5.9); Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 51.73; H, 4.53; N, 13.11 \%. Found: C, $51.63 ; \mathrm{H}, 4.44 ; \mathrm{N}, 13.01 \%$.
\{4-Acetylamino-5-[2 -(2 -chloro-acetylamino)- 4,5,6,7-tetrahydro-benzo[b]thiophen -3- yl methyl] 4H - [1, 2, 4] triazol - 3 -ylsulfanyl\}- acetic acid methyl ester (6I)
Yield $78 \% ; \operatorname{mp} 265-267{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34-1.59(\mathrm{~m}, 4 \mathrm{H}$, cyclohexane), $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36-2.52\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.1 \mathrm{~Hz}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 8.02$ (broad, $2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): $472\left(\mathrm{M}^{+}\right.$, 92), 414 (67), 401 (37.6), 366 (12.8), 319 (6.3), 291 (27.1), 275 (4.9), 219 (33.2), 161 (100), 95 (55.4), 83 (16.7); Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $45.81 ; \mathrm{H}, 4.70$; N, 14.84%. Found: C, 45.75; H, 4.53; N, 14.66 \%.

General preparation of 7-chloro-hepta-2, 4, 6-triynoic acid-\{3-[2-(2- substituted-amino)-4, 5, 6, 7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-hydrazinocarbonyl methylsulfanyl-[1, 2, 4] triazol-4-yl\}amide (7A-L). [33, 34, 37]
A solution of (6) (1 mmol) with $5 \mathrm{ml}(1 \mathrm{mmol})$ hydrazine hydrate (98%) was prepared in 10 ml ethanol. To this acidic alumina (10 g) was added. Ethanol then was evaporated in vacuos, and mixture was kept inside the alumina bath and irradiated for $5-6 \mathrm{~min}$ at the power level of 300 W . The mixture was cooled and the product was extracted with ether. Ether was distilled off and product thus obtained was crystallized from n-hexane - carbon tetrachloride mixture.

Spectral and microanalysis data for representative compounds

7-chloro-hepta - 2, 4, 6 - triynoicacid - \{3 -[2 -(2 -chloro - acetylamino)-4,5,6,7- tetrahydro-benzo[b]thiophen-3-ylmethyl]-5-hydrazinocarbonylmethylsulfanyl-[1, 2, 4] triazol-4-yl\}-amide (7A) Yield $83 \% ; \operatorname{mp} 230-232{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41-1.62$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NH}_{2}, J=6.5 \mathrm{~Hz}\right), 2.45-2.64\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.4 \mathrm{~Hz}\right), 3.71(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.07-4.15(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=4.3 \mathrm{~Hz}), 7.22-7.48$ (m, 4H, ArH), 8.2 (broad, 2H, NH); MS m/z (\%): 568 ($\mathrm{M}^{+}, 65$), 531 (69), 488 (145), 438 (61), 380 (78), 363 (8.4), 286 (100), 258 (13), 242 (18), 210 (51), 155 (33), 123 (25), 89 (49); Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 46.48; H, 4.08; N, 17.25%. Found: C, $46.38 ; \mathrm{H}, 4.11 ; \mathrm{N}, 17.13 \%$.

N -\{3-[2 -(2-Chloro-acetylamino) - 4, 5, 6, 7 - tetrahydro-benzo [b] thiophen - 3-ylmethyl] -5hydrazinocarbonylmethylsulfanyl - [1,2,4] triazol-4-yl\}-benzamide (7E)
Yield 79%; mp above $300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38-1.61(\mathrm{~m}, 4 \mathrm{H}$, cyclohexane), $2.06\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NH}_{2}, J=6.4 \mathrm{~Hz}\right), 2.45-2.62\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.2 \mathrm{~Hz}\right), 3.67(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.10-4.24(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=4.7 \mathrm{~Hz})$, 7.35-7.66(m, $5 \mathrm{H}, \mathrm{ArH}$), 8.06 (broad, 2H, NH); MS m/z (\%): 534 ($\mathrm{M}^{+}, 38.2$), 498 (100), 455 (10.4), 439 (17.8), 380 (11.7), 363 (29), 286 (9.8), 258 (47), 210 (57), 155 (20.8), 123 (7.7), 89 (10.9); Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 49.48; H, 4.53; N, 18.36 \%. Found: C, $49.51 ; \mathrm{H}, 4.39 ; \mathrm{N}, 18.17 \%$.

N -[3-(4-Acetylamino-5-hydrazinocarbonylmethylsulfanyl-4H -[1,2,4] triazol-3-ylmethyl)-4,5,6,7-tetrahydro-benzo [b] thiophen-2-yl]-2-chloro-acetamide(7I)
Yield 67%; mp $249-251{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24-1.48$ (m, 4H, cyclohexane), $1.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NH}_{2}, J=6.3 \mathrm{~Hz}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.43-2.54\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\mathrm{CH}_{2}, J=4.9$ $\mathrm{Hz}), 3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.12-4.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=4.0$ Hz), 8.09 (broad, 2H, NH); MS m/z (\%): 472 ($\mathrm{M}^{+}, 93.3$), 436 (24), 393 (21), 378 (12.27), 320 (5.86), 303 (17), 271 (100), 229 (15.2), 212 (8.4), 156 (34), 123 (20), 69 (70); Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 43.26; H, 4.70; N, 20.77 \%. Found: C, 43.20; H, 4.57; N, 20.81%.

General preparation of 7-chloro-hepta-2, 4, 6-triynoic acid -\{3-(2- substituted -amino-4,5,6,7-tetrahydro-benzo[b]thiophen-3ylmethyl)-5-[2-(N'-acetyl-hydrazino)-2-oxo-ethylsulfanyl] -[1, 2, 4] triazol-4-yl\}-amide (8AA-8AJ, 8A-8Z). [32, 33, 37]
To a solution of (7) (1 mmol) in dichloromethane (excess amount), appropriate acid chloride (1 mmol) was added drop-wise with constant vigorous stirring. After 25 min of stirring, acidic alumina (10 g) was added. Dichloromethane then was evaporated in vacuos, and mixture was kept inside the alumina bath and irradiated for $5-6 \mathrm{~min}$ at the power level of 300 W . The mixture was cooled and the product was extracted with ether. Ether was distilled off and product thus obtained was crystallized from n-hexane-carbon tetrachloride mixture.

Spectral and microanalysis data for representative compounds

7-Chloro - hepta - 2, 4, 6 - triynoicacid\{3-[2-(N'-acetyl-hydrazino) - 2-oxo-ethyl sulfanyl]-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-amide (8A)
Yield 82%; mp $254-256{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40-1.66$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.54-2.68\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.5 \mathrm{~Hz}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.24-4.64\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.13, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.63\right), 7.20-7.36$ (m, 4H, ArH), 8.04 (s, 2H, NH); MS m/z (\%): $610\left(\mathrm{M}^{+}, 79\right), 575$ (26), 540 (52), 489 (63), 461 (78), 438 (32), 395 (41), 376 (4.8), 326 (19), 240 (18), 223 (7.6), 210 (100), 171 (8.3), 144 (3.3); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 47.21; H, 4.13; N, 16.06 \%. Found: C, 47.09; H, 4.03; N, 16.17 \%.

N- (3-\{4- Acetylamino - 5-[2-(N' -benzoyl-hydrazino)-2-oxo-ethylsulfanyl] - 4H -[1,2,4] triazol-3-ylmethyl\}-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl)-2-chloro-acetamide (8AC)
Yield 71%; mp 226-228 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.37-1.63$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.48-2.62\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.1 \mathrm{~Hz}\right), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.22-4.64\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.28, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.59\right), 7.20-7.69$ (m, 5H, ArH), 8.05 (s, 2H, NH); MS m/z (\%): 576 ($\mathrm{M}^{+}, 100$), 541 (56.2), 496 (30.8), 481 (29.5), 427 (10), 379 (15), 325 (13.3), 287 (37), 241 (23.5), 167 (76), 124 (22), 109 (7), 98 (5.5); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $50.04 ; \mathrm{H}, 4.55 ; \mathrm{N}, 17.02 \%$. Found: C, 50.13; H, 4.43; N, 17.14 \%.

N -[3-(4-Acetylamino-5-\{2-[N^{\prime}-(2-chloro-acetyl)-hydrazino]-2-oxo-ethylsulfanyl\}-4H-[1,2,4] triazol-3-ylmethyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-2-chloro-acetamide (8AG)
Yield 84%; mp $247-249{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36-1.51$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.41-2.63\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.4 \mathrm{~Hz}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.76$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.25-4.69\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.33, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.63\right), 8.07(\mathrm{~s}, 2 \mathrm{H}$, NH); MS m/z (\%): 548 ($\mathrm{M}^{+}, 14.1$), 513 (38), 498 (15.7), 458 (17.3), 423 (100), 377 (23.5), 309 (3.9), 280 (13.2), 229 (5.8), 177 (11), 161 (29.6).; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 41.61; H, 4.23; N, 17.88 \%. Found: C, 41.66; H, 4.13; N, 17.80 \%.

7 - Chloro-hepta - 2, 4, 6 - triynoic acid \{3- [2- (N^{\prime} - benzoyl-hydrazino)-2-oxo-ethyl sulfanyl]-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-amide (8E)
Yield $71 \% ; \operatorname{mp} 231-233{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.65-1.64$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.51-2.64 (t, 4 H , cyclohexane $\left.\mathrm{CH}_{2}, J=4.2 \mathrm{~Hz}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.23(\mathrm{~s}$,
$\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.34-4.62\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.23, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.76\right), 6.90-7.38(\mathrm{~m}, 9 \mathrm{H}, \operatorname{ArH}), 8.03(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 672\left(\mathrm{M}^{+}, 100\right), 614$ (11.1), 579 (13.2), 534 (32), 480 (3.6), 432 (3.4), 379 (8.2), 325 (8.1), 287 (11.9), 241 (15.4), 167 (23.8), 124 (54.2), 109 (25.7), 98 (22); Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 51.79 ; \mathrm{H}, 4.05 ; \mathrm{N}, 14.58 \%$. Found: C, $51.72 ; \mathrm{H}, 4.10 ; \mathrm{N}, 14.42 \%$.

7-Chloro-hepta- 2,4,6-triynoic acid (3 - [2-(2-chloro-acetylamino) - 4,5, 6, 7-tetrahydro -benzo[b]thiophen-3-ylmethyl]-5-\{2-[N'-(2-chloro-acetyl)-hydrazino]-2-oxo-ethylsulfanyl\}-[1,2,4] triazol-4-yl)-amide (8I)
Yield 74%; mp $290-292{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33-1.55$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.44-2.62 (t, 4H, cyclohexane $\mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}$), $3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.13(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.26-4.64\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.43, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.68\right), 7.17-7.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 644\left(\mathrm{M}^{+}, 35.5\right), 609$ (43), 574 (27.7), 559 (5.5), 519 (40), 471 (26.8), 436 (10.5), 408 (13.2), 390 (8.7), 338 (4.7), 310 (100), 280 (9.1), 229 (20.2), 177 (33.3), 161 (8.8); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $44.69 ; \mathrm{H}, 3.75 ; \mathrm{N}, 15.20 \%$. Found: C, $44.79 ; \mathrm{H}, 3.63$; N, 15.18 \%

N-\{3-[2-(N'-Acetyl-hydrazino)-2-oxo-ethylsulfanyl]-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-benzamide (8M)
Yield $57 \% ; \operatorname{mp} 170-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31-1.59$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.45-2.64\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.7 \mathrm{~Hz}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.19\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.28-4.61\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.23, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.58\right), 7.08-7.68$ (m, 5H, ArH), 8.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$); MS m/z (\%): 576 ($\mathrm{M}^{+}, 13.6$), 540 (13), 489 (40.9), 438 (6), 376 (51.3), 326 (100), 240 (77.4), 223 (15.9), 171 (25), 144 (4.4); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $50.04 ; \mathrm{H}, 4.55 ; \mathrm{N}, 17.02$ \%. Found: C, $50.19 ; \mathrm{H}, 4.49 ; \mathrm{N}, 17.21 \%$.

N -\{3 -[2 - (N'-Benzoyl-hydrazino)- 2 -oxo-ethylsulfanyl] - 5 - [2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo [b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-benzamide (8Q)
Yield $91 \% ; \operatorname{mp} 124-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38-1.54$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.44-2.62 (t, 4H, cyclohexane $\mathrm{CH}_{2}, J=5.2 \mathrm{~Hz}$), $3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.16$ (s, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.22-4.62\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.46, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.61\right), 7.38-7.74(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 638\left(\mathrm{M}^{+}, 100\right), 603$ (43), 579 (36), 534 (84), 480 (54.6), 432 (9.9), 392 (12), 379 (37), 325 (40), 298 (32), 287 (26), 241 (6.3), 167 (10), 109 (5.3), 98 (14); Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 54.58; H, 4.42; N, 15.36%. Found: C, 54.39; H, 4.33; N, 15.43%.

N -(3-[2-(2-Chloro-acetylamino)- 4, 5, 6, 7 - tetrahydro-benzo [b] thiophen -3-ylmethyl]-5-\{2-[N^{\prime}-(2-chloro-acetyl)-hydrazino]-2-oxo-ethylsulfanyl\}-[1,2,4]triazol-4-yl)-benzamide (8U)
Yield 82%; mp $235-237{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40-1.64$ (m, 4H, cyclohexane), 2.56-2.73 (t, 4 H , cyclohexane $\left.\mathrm{CH}_{2}, J=4.6 \mathrm{~Hz}\right), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.11(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.21-4.48\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.52, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.74\right), 6.90-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.05(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 610\left(\mathrm{M}^{+}, 100\right), 575$ (85), 533 (49), 472 (14), 431 (29), 402 (11), 353 (7.8), 310 (67), 281 (31), 234 (24), 178 (19), 134 (6.1), 98 (3.4); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 47.21; H, 4.13; N, 16.06 \%. Found: C, $47.08 ; \mathrm{H}, 4.24 ; \mathrm{N}, 16.18 \%$.
\mathbf{N}-(3-\{4-Acetylamino-5-[2-(N'-acetyl-hydrazino)-2-oxo-ethylsulfanyl] - 4H - [1,2,4] triazol-3-ylmethyl\}-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl)-2-chloro-acetamide (8Y)
Yield $81 \% ; \operatorname{mp} 251-253{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.39-1.65$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.47-2.61\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.4 \mathrm{~Hz}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.09\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.18-4.49\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{NH}-\mathrm{NH}}=4.26, \mathrm{~J}_{\mathrm{NH}-\mathrm{NH}}=4.50\right), 8.03(\mathrm{~s}$, 2H, NH); MS m/z (\%): 514 ($\mathrm{M}^{+}, 100$), 479 (62), 438 (15.8), 376 (52), 335 (71), 279 (8.7), 223 (24), 177 (27); Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 44.40; H, 4.71; N, 19.07 \%. Found: C, 44.34; H, 4.87; N, 19.28 \%.

General preparation of 7-chloro-hepta-2, 4, 6-triynoic acid -\{3-(benzylidene-hydrazinocarbonylm ethylsulfanyl)-5-[2-(2- substituted -amino)- 4, 5, 6, 7-tetrahydro-benzo[b] thiophen- 3ylmethyl]- [1, 2, 4] triazol-4-yl\}-amide (9A-L). [32, 33, 37]
A solution of (7) (1 mmol) with benzaldehyde (1 mmol) was prepared in 10 ml ethanol. To this acidic alumina (10 g) was added. Ethanol then was evaporated in vacuos, and mixture was kept inside the alumina bath and irradiated for 1 min at the power level of 300 W . The mixture was cooled and poured on ice. The solid thus separated was filtered and extracted with ether. Ether was distilled off and product thus obtained was crystallized from hot ethanol.

Spectral and microanalysis data for representative compounds

7 - chloro-hepta - 2, 4, 6 - triynoic acid - \{3-(benzylidene - hydrazinocarbonylm ethylsulfanyl)-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3ylmethyl]-[1,2,4] triazol-4-yl\}-amide (9A)
Yield 86%; mp decomposed around $226-228{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38-1.61$ (m, 4 H , cyclohexane), 2.51-2.62 (t, 4 H , cyclohexane $\mathrm{CH}_{2}, ~ J=4.4 \mathrm{~Hz}$), $3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94$ (s, $\left.2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.91-7.40(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 8.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}), 8.24(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH})$; MS m/z (\%): 656 ($\mathrm{M}^{+}, 69$), 615 (19), 570 (37), 532 (21), 468 (58), 399 (24), 348 (35), 287 (100), 210 (18.4), 157 (11.4), 103 (12.3); Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 53.05; H, 4.14; N, 14.93 \%. Found: C, 53.14; H, 4.03; N, 14.87 \%.

N -\{3-(Benzylidene - hydrazinocarbonylmethylsulfanyl)-5-[2 - (2 - chloro -acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-benzamide (9E)
Yield $78 \% ; \operatorname{mp~} 182-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.66-1.87$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), 2.40-2.51 (t, 4H, cyclohexane $\mathrm{CH}_{2}, J=4.9 \mathrm{~Hz}$), $3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.19(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.78-7.54(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.8(\mathrm{~d}, 2 \mathrm{H}$, benzene CH$), 7.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}), 8.13(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$); MS m/z (\%): 622 ($\mathrm{M}^{+}, 6.9$), 573 (31), 535 (3), 500 (6), 470 (13.7), 399 (3.4), 348 (39), 319 (16), 287 (100), 224 (67.6), 210 (29), 157 (5), 103 (9.8); Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClN}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, $55.98 ;$ H, $4.54 ;$ N, 15.76 \%. Found: C, $55.98 ;$ H, 4.42; N, 15.69%.

N - \{3 - [4-Acetylamino -5 - (benzylidene-hydrazinocarbonylmethylsulfanyl)-4H-[1,2,4] triazol-3-ylmethyl]-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl\}-2-chloro-acetamide (9I)
Yield 81%; mp decomposed around $221-223{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.42-1.60$ (m, 4 H , cyclohexane), $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.44-2.60\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.6 \mathrm{~Hz}\right), 3.75$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.91-7.12(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.01$ (s, 3 H , NH), 8.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$); MS m/z (\%): $560\left(\mathrm{M}^{+}, 100\right), 525$ (3.7), 474 (13.5), 432 (9), 363 (12), 322 (17), 305 (60.4), 263 (32), 231 (76), 175 (38.6); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 51.47; H, 4.68; N, 17.51 \%. Found: C, 51.55; H, 4.49; N, 17.60%.

General preparation of 7-chloro-hepta-2, 4, 6-triynoic acid -\{3-(4- amino-5-mercapto-4H-[1, 2, 4] triazol-3-ylmethylsulfanyl)-5-[2-(2- substituted -amino)-4, 5, 6, 7-tetrahydro-benzo[b]thiophen3ylmethyl] - [1, 2, 4] triazol-4-yll-amide(10A-L). [32, 34, 37]
The (7) (1 mmol) was dissolved in alcoholic potassium hydroxide (1 mmol) and kept for stirring. Carbon disulphide (1.5 mmol) was added drop wise to this solution with stirring. Thick solid mass was obtained, to which 50 ml of absolute alcohol was added. Stirring was continued for 16 h. At the end of $16^{\text {th }} \mathrm{h}$, dry ether was added to the mixture. The precipitate (thiocarbazate) obtained was taken immediately for the next step.

A solution of thiocarbazate (1 mmol) with hydrazine hydrate (1 mmol) was prepared in 10 ml ethanol. To this acidic alumina (10 g) was added. Ethanol then was evaporated in vacuos, and mixture was kept inside the alumina bath and irradiated for $5-6 \mathrm{~min}$ at the power level of 300 W . The mixture was cooled and poured on ice. The solid thus separated was filtered, extracted with ether, ether was distilled off and product thus obtained was crystallized from hot ethanol.

Spectral and microanalysis data for representative compounds

7-chloro-hepta-2,4,6-triynoic acid -\{3-(4- amino-5-mercapto-4H-[1,2,4] triazol-3-ylmethylsulfanyl)-5-[2-(2-chloro-acetylamino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3ylmethyl] - [1,2,4] triazol-4-yl\}amide (10A)
Yield $72 \% ; \operatorname{mp} 232-234{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31-1.58$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $2.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.56-2.73\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.3 \mathrm{~Hz}\right), 3.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.82(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.14-7.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.1 \quad(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; MS m/z (\%): 624 ($\mathrm{M}^{+}, 82$), 570 (43), 517 (31), 461 (26), 384 (31), 326 (13.2), 247 (15), 226 (17), 126 (100); Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 44.23; H, 3.71; N, 20.18%. Found: C, 44.12; H, 3.65; N, 20.02 \%.

N-\{3-(4-Amino-5-mercapto-4H-[1,2,4]triazol-3-ylmethylsulfanyl)-5-[2-(2-chloro-acetyl
amino)-4,5,6,7-tetrahydro-benzo[b]thiophen-3-ylmethyl]-[1,2,4]triazol-4-yl\}-benzamide (10E)
Yield 80%; mp $256-258{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43-1.72$ (m, 4H, cyclohexane), $2.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.36-2.62\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.2 \mathrm{~Hz}\right), 3.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.86(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.06-7.62(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.08$ (s,2H, NH); MS m/z (\%): $590\left(\mathrm{M}^{+}, 100\right), 536$ (17), 483 (22), 427 (61), 350 (14), 326 (45.7), 247 (39), 226 (6.6), 126 (22.3), 89 (19.7); Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{9} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 46.81; H, 4.10; N, 21.36 \%. Found: C, 46.93; H, 4.19; N, 21.48 \%.

N - \{3-[4 -Acetylamino -5-(4-amino - 5- mercapto - 4H-[1, , 2 , 4]triazol -3-yl methylsulfanyl)-4H-[1,2,4]triazol-3-ylmethyl]-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl\}-2-chloro-acetamide (10I) Yield 77%; mp 269-271 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26-1.59$ ($\mathrm{m}, 4 \mathrm{H}$, cyclohexane), $1.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.52-2.71\left(\mathrm{t}, 4 \mathrm{H}\right.$, cyclohexane $\left.\mathrm{CH}_{2}, J=4.5 \mathrm{~Hz}\right), 3.12$ (s, 1H, SH), $3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 4.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 8.04$ (s,2H, NH); MS m/z (\%): 528 ($\mathrm{M}^{+}, 56.3$), 474 (52), 421(100), 365 (10), 288 (48), 246 (93), 219 (8.1), 83 (72.3); Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN}_{9} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, $40.94 ; \mathrm{H}, 4.20 ; \mathrm{N}, 23.87 \%$. Found: C, 40.85; H, 4.07; N, 23.98 \%

Cyclin-Dependent Kinase 5/p25 inhibiting Activity

Kinase inhibit ion was measured by use of scintillation proximity assays (SPA) [10]. Enzyme activities were assayed as the incorporation of [33P] from the gamma phosphate of [33P] ATP (Amersham, cat. no. AH-9968) into biotinylated peptide substrate PKTPKKAKKL. Reactions were carried out in a buffer containing 50 mM Tris-HCI, $\mathrm{pH} 8.0 ; 10 \mathrm{mM} \mathrm{MgCl}_{2}, 0.1 \mathrm{mM} \mathrm{Na}_{3} \mathrm{VO}_{4}$, and 1 mM DTT. The final concentration of ATP was $0.5 \mu \mathrm{M}$ (final specific radioactivity of $4 \mathrm{uCi} / \mathrm{nmol}$), and the final concentration of substrate was $0.75 \mu \mathrm{M}$. Reactions, initiated by the addition of cdk5 and activator protein p25, were carried out at room temperature for 60 minutes. Reactions were stopped by addition of 0.6 volume of buffer containing (final concentrations): 2.5 mM EDTA, 0.05% Triton-X $100,100 \mu \mathrm{M} \mathrm{ATP}$, and $1.25 \mathrm{mg} / \mathrm{mL}$ streptavidin coated SPA beads (Amersham cat. no. RPNQ0007). Radioactivity associated with the beads was quantified by scintillation counting. We have also done cytotoxicity analysis of the above-synthesized compounds, using neutral red uptake by using Vero-C-1008 cell line [38] at various concentrations ($6.25-50 \mu \mathrm{~g} / \mathrm{mL}$), none of them were found toxic. Hence the activities of the above-synthesized compounds were not due to cytotoxicity of compounds.

RESULTS AND DISCUSSION

Scheme 1: Synthesis of lead compound/s 3.

Compounds 1A-D, 2A-D, 3A-L, 4A-L, 5A-L, 6A-L, 7A-L, 8AA-8AJ, 8A-8Z, 9A-L and 10AL were synthesized using reported methods.[6, 10, 11, 16-29] Compounds 1A-D was converted to thiocarbazate salts by treatment with carbon disulphide and potassium hydroxide, which on treatment with hydrazine hydrate gave 2A-D. Compounds 2A-D when treated with 4chlorobenzoyl chloride at $0^{\circ} \mathrm{C}$ to yield 3A-L (Scheme 1). The transformed compounds 3A-L on treatment with diiodomethane in the presence of strong alkali i.e. sodium hydroxide gave 4A-L (Scheme 2). Title compounds 3A-L were treated with chloroacetonitrile, which on neutralization
with sodium carbonate gave a precipitates of compounds 5A-L (Scheme 3). Compounds 3A-L, when treated with methyl bromoacetate in basic condition produced 6A-L. Chemical transformation of 6A-L to 7A-L was achieved by treatment it with hydrazine hydrate (Scheme 4). While compounds 7A-L, on treatment with appropriate acid chlorides, furnished $\mathbf{8 A}-\mathrm{L}$. Schiff bases, the condensation products of 9A-L, were synthesized by treating 7A-L with benzaldehyde and confirmed by absence of triplet of NH of hydrate. Compounds 7A-L were converted to thiocarbazate salts by treatment with carbon disulphide and potassium hydroxide, which on treatment with hydrazine hydrate gave 10A-L (Scheme 5). The NMR spectra confirmed formation of triazole derivative from hydrazide, which shows presence of sulfhydryl proton at 3.1.

Scheme 2: Synthesis of Bis derivatives 4.

Scheme 3: Synthesis of cyano analogs 5.

Scheme 4: Synthesis of hydrazides 7.

Scheme 5: Synthesis of triazole-amides 8, Schiff bases 9 and Triazolo-s-triazole 10.

Cyclic-Dependent Kinase 5/p25 inhibiting activity

Kinase inhibition was measured by use of scintillation proximity assays (SPA). The results of the assays are reported in Tables 1, 2, $\mathbf{3}$ and $\mathbf{4}$. During the preliminary screening compound 2A has emerged as hit cdk5/p25 (IC50 $=043 \pm 02 \mathrm{nM})$, with good potency and more opportunities for chemical transformation for the optimization. Testing of $\mathbf{2 A}$ against other cdk's revealed that $\mathbf{2 A}$ was essentially equipotent at inhibiting cdk2/cyclin E (IC50 $=52 \pm 5 \mathrm{nM})$, a cancer target. Thus with an objective to improve cdk5 potency and minimize cdk2 activity, certain chemical modification have been performed. Variation of amine side chain of $\mathbf{2 A}$ with MAOS allowed us to rapidly explore the first arm of the parmacophore. As a first step towards lead optimization amino group was protected to the corresponding compounds 3A-L however, all of these modifications were resulted in a substantial decrease in activity. The next structural modification made was a dimeric product of 4A-L but these changes were also resulted in a substantial loss of biological activity.
s-Alkylation with acetonitrile provided the first analogs 5A and 5I that demonstrated with excellent activity, while others exhibited moderate to poor activity. Thus it was decided to modify the structure as SH group. In order to optimize the sulfhydryl component, compounds 6A-L were synthesized and investigated, which revealed loss of activity. A further modification of compounds $\mathbf{6 A}-\mathrm{L}$ produced compounds $\mathbf{7 A - L}$. The results of the cdk5/p25 inhibitory activity are quite interesting because four 7A-D, of these compounds have shown impressive percentage of inhibition. Compounds 7A-L were selected for further studies as it has a free amino group, which opened an area for further modification at this point. Compounds $\mathbf{8 A}-\mathbf{A J}$ was obtained by treatment with acid chlorides which ultimately showed decreased activity. Furthermore, compounds 7A-L were converted to Schiff bases with benzaldehyde, and on investigation, 9A-E have shown promising activity while other remained inactive. Compounds $\mathbf{1 0} \mathrm{A}-\mathrm{L}$ were found to be inactive.

Attention was then turned to optimization of the $\mathbf{9 A - E}$ in order to gain the selectivity over cdk2. On comparing, 9E afforded improved cdk5 potency that is >17.5-fold selectivity versus cdk2. The compound 9A was equally selective versus cdk2 and had slightly improved cdk5 IC50. Other derivatives were had noticeably decreased cdk5 activity.

SAR of cdk5/p25 inhibitory screening
Table 1: cdk5 IC_{50} values of the compound 1A-5L.

Sr. No.	R1	R2	R3	${ }^{\mathrm{a}} \mathrm{Cdk} 5$ $\mathbf{I C}_{50}(\mathbf{n M})$	Sr. No.	R1	R2	R3	$\begin{aligned} & { }^{\mathrm{a}} \mathbf{C d k 5} \\ & \mathbf{I C}_{50}(\mathrm{nM}) \end{aligned}$
1A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	-	-	247 ± 37	4C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \hline-4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	627 ± 39
1B	NHCOCH_{3}	-	-	346 ± 41	4D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	164 ± 11
1C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	-	-	373 ± 39	4E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	669 ± 42
1D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	-	-	397 ± 35	4F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	646 ± 83
2 A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	-	-	$\mathbf{0 4 3} \pm \mathbf{0 2}$	4G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	695 ± 47
2B	NHCOCH_{3}	-	-	386 ± 85	4H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	577 ± 38
2 C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	-	-	621 ± 23	4I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	849 ± 85
2D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	-	-	268 ± 31	4J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	839 ± 56
3A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	343 ± 12	4K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	766 ± 81
3B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	460 ± 71	4L	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	-	734 ± 36
3C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	183 ± 11	5A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	058 ± 12
3D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	457 ± 43	5B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	415 ± 75
3E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	751 ± 74	5C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	551 ± 72
3F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	572 ± 63	5D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	422 ± 12
3G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	891 ± 112	5E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	657 ± 64
3H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	674 ± 67	5F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	393 ± 61
3 I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	689 ± 82	5G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	486 ± 78
3J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	584 ± 47	5H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	4874 ± 86
3K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	618 ± 46	5I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	061 ± 06
3L		$-\mathrm{CH}_{3}$	-	433 ± 24	5J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	458 ± 84
4A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	340 ± 22	5K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	564 ± 64
4B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \\ & \hline \end{aligned}$	-	367 ± 21	5L	$\begin{aligned} & \mathrm{NHCH} \\ & \text { H } \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned} \mathrm{COO}$	$-\mathrm{CH}_{3}$	-	641 ± 74

Table 2: $\mathrm{cdk}^{5} \mathrm{IC}_{50}$ values of the compound $6 \mathrm{~A}-8 \mathrm{Z}$.

Sr. No.	R1	R2	R3	$\begin{aligned} & { }^{{ }^{\mathrm{a}} \text { Cdk5 }} \\ & \mathbf{I C}_{50} \\ & (\mathrm{nM}) \\ & \hline \end{aligned}$	Sr. No.	R1	R2	R3	$\begin{aligned} & { }^{{ }^{\mathrm{a}} \mathbf{C d k 5}} \\ & \mathbf{I C}_{50} \\ & (\mathrm{nM}) \end{aligned}$
6 A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 443 \pm \\ & 106 \end{aligned}$	8AF	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 476 \pm \\ & 68 \end{aligned}$
6B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 389 \pm \\ & 35 \end{aligned}$	8AG	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 452 \pm \\ & 67 \end{aligned}$
6 C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 293 \pm \\ & 38 \end{aligned}$	8AH	NHCOCH_{3}	$-\mathrm{CH}_{3}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 474 \pm \\ & 74 \end{aligned}$
6D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 541 \pm \\ & 18 \end{aligned}$	8AI	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$\mathrm{CH}_{2} \mathrm{C}$	$\begin{aligned} & 358 \pm \\ & 72 \end{aligned}$
6E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 681 \pm \\ & 47 \end{aligned}$	8AJ	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	$\mathrm{CH}_{2} \mathrm{C}$	$\begin{aligned} & 265 \pm \\ & 38 \end{aligned}$
6F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 578 \pm \\ & 74 \end{aligned}$	8B	NHCOCH_{3}	-4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 641 \pm \\ & 49 \end{aligned}$
6G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 353 \pm \\ & 71 \end{aligned}$	8C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 318 \pm \\ & 30 \end{aligned}$
6 H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 641 \pm \\ & 119 \end{aligned}$	8D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 352 \pm \\ & 28 \end{aligned}$
6 I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 695 \pm \\ & 112 \end{aligned}$	8E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	- $\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 617 \pm \\ & 23 \end{aligned}$
6J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 389 \pm \\ & 97 \end{aligned}$	8F	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 525 \pm \\ & 47 \end{aligned}$
6 K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 567 \pm \\ & 103 \end{aligned}$	8G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 483 \pm \\ & 41 \end{aligned}$
6L	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 733 \pm \\ & 137 \end{aligned}$	8H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 271 \pm \\ & 17 \end{aligned}$
7A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & \mathbf{0 3 9} \pm \\ & \mathbf{0 2} \end{aligned}$	8I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 229 \pm \\ & 67 \end{aligned}$
7B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 064 \pm \\ & 02 \end{aligned}$	8J	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 260 \pm \\ & 38 \end{aligned}$
7 C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 236 \pm \\ & 34 \end{aligned}$	8K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 340 \pm \\ & 22 \end{aligned}$
7D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 201 \pm \\ & 31 \end{aligned}$	8L	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 185 \pm \\ & 39 \end{aligned}$
7E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 037 \pm \\ & 01 \end{aligned}$	8M	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 350 \pm \\ & 61 \end{aligned}$
7F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 192 \pm \\ & 47 \end{aligned}$	8N	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 548 \pm \\ & 46 \end{aligned}$
7G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 264 \pm \\ & 72 \end{aligned}$	80	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 564 \pm \\ & 77 \end{aligned}$
7H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 455 \pm \\ & 79 \end{aligned}$	8P	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 467 \pm \\ & 48 \end{aligned}$
7I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	061 ± 01	8Q	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	- $\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 468 \pm \\ & 92 \end{aligned}$
7J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 249 \pm \\ & 36 \end{aligned}$	8R	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 413 \pm \\ & 45 \end{aligned}$
7K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 180 \pm \\ & 27 \end{aligned}$	8S	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 466 \pm \\ & 73 \end{aligned}$
7L	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 931 \pm \\ & 24 \end{aligned}$	8T	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 434 \pm \\ & 80 \end{aligned}$
8A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	-4-	$-\mathrm{CH}_{3}$	$468 \pm$	8U	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{C}$	$532 \pm$

		$\mathrm{ClC}_{6} \mathrm{H}_{4}$		64				1	57
8AA	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$639 \pm$	8V	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{C}$	$\begin{aligned} & 643 \pm \\ & 74 \end{aligned}$
8AB	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 366 \pm \\ & 48 \end{aligned}$	8W	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 547 \pm \\ & 74 \end{aligned}$
8AC	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 363 \pm \\ & 34 \end{aligned}$	8X	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{C} \\ & 1 \end{aligned}$	$\begin{aligned} & 362 \pm \\ & 35 \end{aligned}$
8AD	NHCOCH_{3}	$-\mathrm{CH}_{3}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 436 \pm \\ & 46 \end{aligned}$	8Y	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 454 \pm \\ & 49 \end{aligned}$
8AE	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 411 \pm \\ & 83 \end{aligned}$	8Z	NHCOCH_{3}	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}$	$\begin{aligned} & 327 \pm \\ & 48 \end{aligned}$

Table 3: cdk5 IC_{50} values of the compound 9A-10L.

$\begin{gathered} \text { Sr. } \\ \text { No. } \\ \hline \end{gathered}$	R1	R2	R3	${ }^{\text {a }}$ Cdk5 $\mathbf{I C}_{50}(\mathbf{n M})$	$\begin{aligned} & \text { Sr. } \\ & \text { No. } \\ & \hline \end{aligned}$	R1	R2	R3	${ }^{\text {a }}$ Cdk5 $\mathrm{IC}_{50}(\mathrm{nM})$
9A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	035 ± 01	10A	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 2860 \pm \\ & 116 \end{aligned}$
9B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	213 ± 76	10B	NHCOCH_{3}	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 6380 \pm \\ & 104 \end{aligned}$
9C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	217 ± 23	10C	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 3280 \pm \\ & 217 \end{aligned}$
9D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	258 ± 37	10D	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -4- \\ & \mathrm{ClC}_{6} \mathrm{H}_{4} \end{aligned}$	-	$\begin{aligned} & 5850 \pm \\ & 158 \end{aligned}$
9E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	032 ± 1	10E	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 6185 \pm \\ & 144 \end{aligned}$
9F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	385 ± 28	10F	NHCOCH_{3}	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 6437 \pm \\ & 149 \end{aligned}$
9G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	435 ± 52	10G	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 4587 \pm \\ & 179 \end{aligned}$
9H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	267 ± 52	10H	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \end{aligned}$	$-\mathrm{C}_{6} \mathrm{H}_{5}$	-	$\begin{aligned} & 4985 \pm \\ & 146 \end{aligned}$
9 I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	336 ± 48	10I	$\mathrm{NHCOCH}_{2} \mathrm{Cl}$	$-\mathrm{CH}_{3}$	-	$4035 \pm$
9J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	453 ± 75	10J	NHCOCH_{3}	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 5146 \pm \\ & 230 \end{aligned}$
9K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	467 ± 44	10K	$\mathrm{NHCOC}_{6} \mathrm{H}_{5}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 6142 \pm \\ & 201 \end{aligned}$
9L	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$-\mathrm{CH}_{3}$	-	535 ± 52	10L	$\begin{aligned} & \mathrm{NHCH} \mathrm{CH}_{2} \mathrm{COO} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$-\mathrm{CH}_{3}$	-	$\begin{aligned} & 6212 \pm \\ & 251 \\ & \hline \end{aligned}$

a: Inhibitory concentration
Table 4: Selectivity ratio of most active compounds.

Compound	${ }^{\mathbf{a}} \mathbf{C d k 5}$ $(\mathbf{n m})$ $\mathbf{I C}_{\mathbf{5 0}}$	${ }^{\mathbf{a}} \mathbf{C d k 2}$ $(\mathbf{n m})$	$\mathbf{I C}_{\mathbf{5 0}}$
$\mathbf{2 A}$	43 ± 2	52 ± 5	Select k2/k5
$\mathbf{5 A}$	58 ± 12	1136 ± 154	1.2
$\mathbf{5 I}$	61 ± 6	1319 ± 89	21.6
$\mathbf{7 A}$	39 ± 2	799 ± 58	20.5
$\mathbf{7 B}$	64 ± 2	587 ± 48	9.2
$\mathbf{7 E}$	37 ± 1	487 ± 68	13.2
$\mathbf{7 I}$	61 ± 1	5986 ± 132	98.1
$\mathbf{9 A}$	35 ± 1	48 ± 7	1.4
$\mathbf{9 E}$	32 ± 1	560 ± 21	17.5

a: Inhibitory concentration

CONCLUSION

In conclusion, a novel series of clubbed triazolyl thiophene derivatives that inhibit cdk5/p25 has been discovered. It was found that the potency of the screening hit $\mathbf{2 A}$ could be enhanced first by structural transformation to a 2-position of thiophene core and amino and sulfhydryl groups in triazole core and subsequently by the introduction of appropriate constituents on both the heterocyclic rings leading to the most promising compounds 9A and 9E. Finally it can be concluded that an ideal cdk5/p25 inhibitor with minimal toxicity and potential activity can be designed using above said compounds as lead molecules. The said inhibitor can be synthesized using MAOS so as to get the benefits of this novel technique.

Acknowledgement

Authors are thankful to Dr. Reddys Laboratories Ltd, Ameerpet, Hyderabad, India, for providing the facilities.

REFERENCES

[1] M. Mapelli, A. Musacchio, Neurosignals, 2003, 12, 164-172.
[2] M. Mapelli, L. Massimiliano, C. Crovace, M. A. Seeliger, L. H. Tsai, L. Meijer, A. Musacchio, J. Med. Chem., 2005, 48 (3), 671-679.
[3] L. F. Lau, J. B. Schachter, P. A. Seymour, M. Sanner, Curr. Topics Med. Chem., 2002, 2 (4), 395-415.
[4] H. Tomoko, U. Masashi, O. Eiichi, Taro Saito, I. Koichi, U. Tsuneko, O. Akira, K. Takeo, J. Biochem., 1995, 117 (4), 741-749.
[5] L. F. Lau, J. B. Schachter, P. A. Seymour, M. Sanner, J. Mol. Neurosci., 2002, 19 (3), 267270.
[6] J. H. Christopher, A. S. Mark, B. C. Christopher, G. Thomas, A. Mavis, C. L. John, K. Zhijun, K. Stanley, K. A. Michael, T. Bonnie, S. M. Frank, K. Kristin, P. Marcia, Bioorg. Med. Chem. Lett., 2004, 14, 5521-5525.
[7] A. B. James, L. S. Gretchen, N. Akinori, Y. Zhen, M. Laurent, A. F. Allen, T. LiHuei, T. K. Young, A. G. Jean, J. C. Andrew, L. H. Richard, C. H. Hugh, C. N. Angus, G. Paul, Nature, 1999, 402 (6267), 669-671.
[8] R. Dhavan, L. H. Tsai, Nat. Rev. Mol. Cell. Biol., 2001, 2, 749-754.
[9] K. S. Kim, S. D. Kimball, R. N. Misra, D. B. Rawlins, J. T. Hunt, H.Y. Xiao, S. Lu, L. Qian, W. Shan, T. Mitt, Z. W. Cai, J. Med. Chem., 2002, 45 (18), 3905-3927.
[10] R. N. Misra, H.Y. Xiao, K. S. Kim, S. Lu, W. C. Han, S. A. Barbosa, J. T. Hunt, D. B. Rawlins, W. Shan, S. D. Kimball, J. Med. Chem., 2004, 47 (7), 1719-1728.
[11] R. N. Misra, J. G. Mulheron, R. Batorsky, J. S. Tokarski, J. S. Sack, S. D. Kimball, F. Y. Lee, K. R. Webster, Bioorg. Med. Chem. Lett., 2004, 14 (11), 2973-2977.
[12] C. B. Cooper, C. J. Helal, M. A. Sanner, EU. Patent EP1, 256, 578 A1 (2002).
[13] M. A. Sanner, C. J. Helal, C. B. Cooper, US. Patent US6, 720, 427 B2 (2004).
[14] P. Pevarello, R. Amica, M. Villa, B. Salom, A. Vulpetti, M. Varasi, US. Patent US372, 832 (2000).
[15] P. Pevarello, R. Amici, G. Traquandi, M. Villa, A. Vulpetti, A. Isacchi, PCT. Patent WO00, 26, 203 (2000).
[16] J. Pu, A. F. Kreft, S. H. Aschmies, K. P. Atchison, J. Berkowitz, T. J. Caggiano, M. Chlenov, G. Diamantidis, B. L. Harrison, Y. Hu, D. Huryn, J. S. Jacobsen, M. Jin, K. Lipinski, P. Lu, R. L. Martone, K. Morris, J. Sonnenberg-Reines et.al, Bioorg. Med. Chem., 2009, 17, 4708-4717.
[17] D. I. Perez, S. Conde, C. Perez, C. Gil, D. Simon, F. Wandosell, F. J. Moreno, J. L. Gelpi, F. J. Luque and A. Martinez, Bioorg. Med. Chem., 2009, 17, 6914-6925.
[18] R. Chandra, M. P. Kung and H. F. Kung, Bioorg. Med. Chem. Lett., 2006, 16, 1350-1352.
[19] W. F. Fobare, W. R. Solvibile, A. J. Robichaud, M. S. Malamas, E. Manas, J. Turner, Y. Hu, E. Wagner, R. Chopra, R. Cowling, G. Jin, J. Bard, Bioorg. Med. Chem. Lett., 2007, 17, 5353-5356.
[20] R. A. Jelley, J. Elliott, K. R.Gibson, T. Harrison, D. Beher, E. E. Clarke, H. D. Lewis, M. Shearman, and J. D. J. Wrigley, Bioorg. Med. Chem. Lett., 2006, 16, 3839 -3842.
[21] J. M. Contelles, R. Leon, C. Rios, A. G. Garcia, M. G. Lopez, and M. Villarroya, Bioorg. Med. Chem., 2006, 14, 8176-8185.
[22] W. W. Wardakhan, Omar. M. E. Abdel-salam and G. A. Elmegeed, Acta Pharm., 2008, 58, 1-14.
[23] G. Nikolakopoulos, H. Figler, J. Linden, and P. J. Scammells, Bioorg. Med. Chem., 2006, 14, 2358-2365.
[24] E. Duval, A. Case, R. L. Stein and G. D. Cuny, Bioorg. Med. Chem. Lett., 2005, 15, 18851889.
[25] M. R. Shiradkar, M. B. Padhalingappa, S. Bhetalabhotala, A. K. Chakravarthy, D. A. Tupe, R. P. Reddy and S. Thummanagoti, Bioorg. Med. Chem., 2007, 15, 6397-6406.
[26] Nathaniel G. N. Milton, Neurotoxicology, 2004, 22, 767-774.
[27] M. R. Shiradkar, C. A Kalyan, V. Dasari, V. Baru, B. Chiningiri, S. Gandhi and R. Kaur, Bioorg. Med. Chem., 2007, 15, 2601- 2610.
[28] V. Pande and M. J. Ramos, Bioorg. Med. Chem. Lett., 2005, 15, 5129-5135.
[29] M. R. Shiradkar, C. A Kalyan, K. K. Murahari, H. G. Reddy, S. Tatikonda, A. K. Chakravarthy, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokale and M. Raut, Bioorg. Med. Chem., 2007, 15, 3397-4008.
[30] R. A. Mekheimer, M. A. Ameen and K. U. Sadek, Chinese Chem. Lett., 2008, 19, 788-790.
[31] M. Shidhar, R. M. Rao, R. M. Kumbhare and H. K. Nanduri, Tetrahedron Lett., 2007, 48, 3171-3172.
[32] D. K. Kim, J. Kim and H. J. Park, Bioorg. Med. Chem., 2004, 12, 2013-2020.
[33] S. G. Kucukguzel, S. Rollas, H. Erdeniz and M. Kiraz, Eur. J. Med. Chem., 1999, 34, 153160.
[34] H. Bayrak, A. Demirbas, S. A. Karaoglu and N. Demirbas, Eur. J. Med. Chem., 2009, 44, 1057-1066.
[35] N. Demirbas, S. A. Karaoglu, A. Demirbas and K. Sancak, Eur. J. Med. Chem., 2004, 39, 793-804.
[36] A. A. Fadda, E. A. Latif and R. E. El-Mekawy, Eur. J. Med. Chem., 2009, 44, 1250-1256.
[37] M. Shiradkar, G. V. S. Kumar, V. Dasari, S. Tatokonda, K. C. Akula and R. Shah, Eur. J. Med. Chem., 2007, 42, 807-816.
[38] M. R. Shiradkar, G. V. S. Kumar, A. K. Chakravarthy, U. Pandit, A. Maheta, Arkivoc, 2006, (xiv), 141-154.

