Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Der Pharmacia Sinica, 2011, 2 (1): 135-141

ISSN: 0976-8688 CODEN (USA): PSHIBD

Synthesis and insecticidal activity of 1,2,4-triazolo-thiazolidin-4-one derivatives

¹Vijay Kumar Tirlapur* and ²Tukram Tadmalle

¹Dept. of Pharmaceutical Chemistry, Karanataka College of Pharmacy, Bidar(KS) ²Vidya Vikash College of Pharmacy, Naubad, Bidar

ABSTRACT

Fourteen novel compounds were synthesized and their insecticidal activities were tested. The compounds of **2b**, **2d**, **2e**, **3b**, **3d** and **3e** showed insecticidal activity against Heliothis armigera. All the title compounds were characterized on the basis of IR, ¹HNMR and Mass spectra.

Keywords: Synthesis, insecticidal activity, 1,2,4-triazole, thiazolidine.

INTRODUCTION

The azole moiety is an important and frequent insecticidal, agrochemical structure feature of many biologically active compounds such as cytochrome P450 enzyme inhibitors¹ and peptide analog inhibitors². Recently, much attention has been focused on 4H-1,2,4-triazole derivatives for their broad-spectrum activities, such as fungicidal, herbicidal, anticonvulsants and plant growth regulatory activities³⁻⁵. Further, the disubstituted 1,2,4-triazole derivatives were also reported to show antifungal, insecticidal, herbicidal and anti-inflammatory properties which were similar to 4H-1,2,4-triazole derivatives⁶⁻⁸. promoted by the above observations that the combination of two or more heterocyclic systems enhances the biological profile many-fold than its parent nuclei, we consider to synthesis some compounds bearing 4H-1,2,4-triazole in a molecular framework. Thiazolidinones and their derivatives have been reported having fungicidal, insecticidal and pharmacological activities⁹⁻¹¹. Some of them showed similar activity¹²⁻¹³, such as SN-1 and SS-2. (Scheme 1).Taking these structural features into consideration, it was thought worthwhile to synthesis the novel compounds that combining the 1,2,4-triazole with thiazolidinone by nitrogen heteroatom.

Pelagia Research Library

Scheme 1

MATERIALS AND METHODS

The Synthetic route of the title compounds was seen in Scheme 2.

Where R = a) C_6H_5 , b) $C_6H_4CI(p)$, c) $C_6H_4OH(p)$, d) $C_6H_4Br(p)$, e) $C_6H_4OCH_3(p)$, f) $C_6H_4N(CH_3)_2$, g) C_4H_4O .

General Procedures. Infrared spectra were taken on a Shimadzu FT-IR-8400S spectrometer using KBr disks; ¹H NMR spectra on a Advance 300 MHz spectrometer with DMSO-d₆ or CDCl₃ as solvent and TMS as internal standard, ¹³C NMR (40 MHz, DMSO-d₆) and Mass spectra on a Shimadzu QP 2010 PLUS GC-MS system. Melting points were measured by open capillaries and were uncorrected. The elemental analyses of the compounds were recorded on Carlo Erba 1108 elemental analyzer. All reactions were followed by TLC.

Materials. Unless otherwise stated, these were commercial samples. All organic solvents were of analytical quality and used as purchased. Solvent mixtures are defined by volume ratio (v/v).

Pelagia Research Library

Scheme 2

The intermediate **1**, were synthesized according to the literature¹⁴ and got the accept yield.

General preparation of the compounds 2a-g: Compound 1 (0.01 mol), substituted aromatic aldehydes (0.01 mol) and anhydrous zinc chloride (100 mg) were solved in benzene (30 mL). The mixture was refluxed for 15 hrs. The reactive process was monitored by TLC until the starting material nearly disappeared. The solvent was filtered and evaporated under the reduced pressure; the residue was purified by column chromatography (n-hexane/ethyl acetate 2:1) to afford the compounds 2a-g then crystallized from suitable solvent.

General preparation of the compounds 3a-g: Compound **2a-g** (0.01 mol), mercaptoacetic acid (0.01 mol) and anhydrous zinc chloride (100 mg) were solved in DMF (30 mL). The mixture was refluxed for 8 hrs. The reactive process was monitored by TLC until the starting material nearly disappeared. The solvent was filtered and evaporated under the reduced pressure; the residue was purified by column chromatography (n-hexane/ethyl acetate 2:1) to afford the compounds 3a-g then crystallized from suitable solvent.

5-(4-chlorophenyl)-4-{[(1*E*)-phenylmethylene]amino}-4*H*-1,2,4-triazole-3-thiol (2a).

mp 216-8°C yield 72 % IR (KBr cm⁻¹): 1690 (CN) 1590 (CC) 800 (CCl) ¹H NMR (400 MHz, CDCl₃): δ 7.2-8.2 (m, 9H, Ar-H) 9.3 (s, 1H, SH) 10.1 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): δ 128.90, 131.10, 133.82, 143.00, 148.11, 167.51. MS: m/z 314 (m⁺, 10). Calculated for C₁₅H₁₁N₄SCl (%); C, 57.23; H, 3.52; N, 17.80; found (%); C, 57.20; H, 3.52; N, 17.75.

5-(4-chlorophenyl)-4-{[(1*E***)-(4-chlorophenyl)methylene]amino}-4***H***-1,2,4-triazole-3-thiol (2b). mp 212-4°C yield 62 % IR (KBr cm⁻¹): 1695 (CN) 1592 (CC) 804 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 7.2-8.0 (m, 8H, Ar-H) 9.2 (s, 1H, SH) 10.0 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): δ 129.01, 131.92, 134.31, 136.64, 143.61, 148.22, 168.21. MS: m/z 349 (m⁺, 10). Calculated for C_{15}H_{10}N_4SCl_2 (%); C, 51.59; H, 2.89; N, 16.04; found (%); C, 51.51; H, 2.85; N, 16.01.**

 $4-[(E)-\{[3-(4-chlorophenyl)-5-mercapto-4H-1,2,4-triazol-4-yl]imino\}methyl]phenol (2c).$

mp 214-6°C yield 65 % IR (KBr cm⁻¹): 3750 (OH) 1695 (CN) 1592 (CC) 804 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 7.1-8.0 (m, 8H, Ar-H) 9.1 (s, 1H, SH) 10.0 (s, 1H, N=CH) 11.2 (s, 1H, OH). ¹³C NMR (40 MHz, DMSO-d₆): δ 116.12, 126.41, 129.43, 134.31, 143.06, 143.00, 148.11, 160.82, 167.51. MS: m/z 330 (m⁺, 9). Calculated for C₁₅H₁₁N₄OSCl (%); C, 54.46; H, 3.35; N, 16.94; found (%); C, 54.41; H, 3.34; N, 16.91.

4-{[(1*E***)-(4-bromophenyl)methylene]amino}-5-(4-chlorophenyl)-4***H***-1,2,4-triazole-3-thiol (2d). mp 204-6^oC yield 64 % IR (KBr cm⁻¹): 1690 (CN) 1585 (CC) 799 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 7.0-8.0 (m, 8H, Ar-H) 9.1 (s, 1H, SH) 10.0 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): δ 125.46, 128.92, 134.31, 143.06, 148.16, 167.56. MS: m/z 393 (m⁺, 15). Calculated for C₁₅H₁₀N₄SClBr (%); C, 45.76; H, 2.56; N, 14.23; found (%); C, 45.71; H, 2.54; N, 14.21.**

5-(4-chlorophenyl)-4-{[(1*E***)-(4-methoxyphenyl)methylene]amino}-4***H***-1,2,4-triazole-3-thiol (2e). mp 220-2°C yield 62 % IR (KBr cm⁻¹): 1680 (CN) 1585 (CC) 801 (CCl). ¹H NMR (400 MHz, CDCl₃): \delta 3.9 (s, 3H, OCH₃) 7.2-8.2 (m, 8H, Ar-H) 9.0 (s, 1H, SH) 10.2 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): \delta 55.92, 114.44, 126.12, 128.81, 134.31, 143.07, 148.00, 163.06,** 167.55. MS: m/z 344 (m⁺, 12). Calculated for $C_{16}H_{13}N_4OSC1$ (%); C, 55.73; H, 3.80; N, 16.25; found (%); C, 55.70; H, 3.79; N, 16.23.

5-(4-chlorophenyl)-4-({(1*E*)-[4-(dimethylamino)phenyl]methylene}amino)-4*H*-1,2,4-triazole-3-thiol (2f).

mp 210-2°C yield 70 % IR (KBr cm⁻¹): 1686 (CN) 1585 (CC) 800 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 2.5 (s, 6H, (CH₃)₂) 7.1-8.2 (m, 8H, Ar-H) 9.2 (s, 1H, SH) 10.0 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): δ 40.31, 114.44, 123.31, 128.96, 134.34, 143.01, 148.05, 148.08, 151.93, 167.56. MS: m/z 357 (m⁺, 10). Calculated for C₁₇H₁₆N₅SCl (%); C, 57.06; H, 4.51; N, 19.57; found (%); C, 57.02; H, 4.50; N, 19.51.

5-(4-chlorophenyl)-4-{[(1*E*)-2-furylmethylene]amino}-4*H*-1,2,4-triazole-3-thiol (2g).

mp 255-2°C yield 68 % IR (KBr cm⁻¹): 1680 (CN) 1585 (CC) 805 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 7.0-8.1 (m, 7H, Ar-H) 9.1 (s, 1H, SH) 10.0 (s, 1H, N=CH). ¹³C NMR (40 MHz, DMSO-d₆): δ 109.51, 128.88, 134.71, 134.76, 143.91, 148.06, 149.11, 167.56. MS: m/z 304 (m⁺, 10). Calculated for C₁₃H₉N₄OSCl (%); C, 51.23; H, 2.98; N, 18.38; found (%); C, 51.21; H, 2.95; N, 18.32.

3-[3-(4-chlorophenyl)-5-mercapto-4*H*-1,2,4-triazol-4-yl]-2-phenyl-1,3-thiazolidin-4-one (3a).

mp 255-7°C yield 82 % IR (KBr cm⁻¹): 1720 (CO) 1680 (CN) 1585 (CC) 805 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.2 (s, 1H, CH-Ar) 3.7 (s, 2H, CH₂) 7.0-8.0 (m, 9H, Ar-H) 9.3 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 35.76, 55.12, 128.72, 134.31, 139.21, 148.06, 167.51, 171.06. MS: m/z 388 (m⁺, 10).Calculated for C₁₇H₁₃N₄OS₂Cl (%); C, 52.50; H, 3.37; N, 14.41; found (%); C, 52.45; H, 3.32; N, 14.35.

2-(4-chlorophenyl)-3-[3-(4-chlorophenyl)-5-mercapto-4*H*-1,2,4-triazol-4-yl]-1,3-thiazolidin-4-one (3b).

mp 261-3°C yield 52 % IR (KBr cm⁻¹): 1725 (CO) 1695 (CN) 1593 (CC) 806 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.1 (s, 1H, CH-Ar) 3.6 (s, 2H, CH₂) 7.2-8.1 (m, 8H, Ar-H) 9.2 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 35.78, 55.18, 127.82, 133.33, 137.32, 148.08, 167.51, 172.00. MS: m/z 423 (m⁺, 10). Calculated for C₁₇H₁₂N₄OS₂Cl₂ (%); C, 48.23; H, 2.86; N, 13.23; found (%); C, 48.21; H, 2.85; N, 13.21.

3-[3-(4-chlorophenyl)-5-mercapto-4*H***-1,2,4-triazol-4-yl]-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one** (**3c**).

mp 275-6°C yield 75 % IR (KBr cm⁻¹): 3750 (OH) 1730 (CO) 1693 (CN) 1596 (CC) 801 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.3 (s, 1H, CH-Ar) 3.9 (s, 2H, CH₂) 7.1-8.2 (m, 8H, Ar-H) 9.1 (s, 1H, SH) 11.0 (s, 1H, OH). ¹³C NMR (40 MHz, DMSO-d₆): δ 35.72, 56.12, 115.81, 128.91, 134.33, 148.01, 156.91, 167.51, 171.01. MS: m/z 404 (m⁺, 14). Calculated for C₁₇H₁₃N₄O₂S₂Cl (%); C, 50.43; H, 3.24; N, 13.84; found (%); C, 50.41; H, 3.33; N, 13.81.

2-(4-bromophenyl)-3-[3-(4-chlorophenyl)-5-mercapto-4*H*-1,2,4-triazol-4-yl]-1,3-thiazolidin-4-one (3d).

mp 244-6°C yield 72 % IR (KBr cm⁻¹): 1725 (CO) 1691 (CN) 1588 (CC) 796 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.3 (s, 1H, CH-Ar) 3.7 (s, 2H, CH₂) 7.1-8.0 (m, 8H, Ar-H) 9.0 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 35.77, 55.56, 121.55, 128.91, 134.33, 138.21, 148.01, 167.51,

171.03. MS: m/z 467 (m⁺, 20). Calculated for $C_{17}H_{12}N_4OS_2ClBr$ (%); C, 43.65; H, 2.59; N, 11.98; found (%); C, 43.61; H, 2.54; N, 11.91.

3-[3-(4-chlorophenyl)-5-mercapto-4*H***-1,2,4-triazol-4-yl]-2-(4-methoxyphenyl)-1,3-thiazolidin-4-one** (3e).

mp 280-2°C yield 72 % IR (KBr cm⁻¹): 1720 (CO) 1683 (CN) 1583 (CC) 803 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.2 (s, 1H, CH-Ar) 3.6 (s, 2H, CH₂) 3.9 (s, 3H, OCH₃) 7.0-8.0 (m, 8H, Ar-H) 9.1 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 34.99, 55.11, 55.90, 114.21, 128.96, 134.31, 148.06, 155.96, 167.56, 171.12. MS: m/z 418 (m⁺, 20). Calculated for C₁₈H₁₅N₄O₂S₂Cl (%); C, 51.61; H, 3.61; N, 13.37; found (%); C, 51.60; H, 3.60; N, 13.33.

3-[3-(4-chlorophenyl)-5-mercapto-4*H*-1,2,4-triazol-4-yl]-2-[4-(dimethylamino) phenyl]-1,3-thiazoli - din-4-one (3f).

mp 262-4°C yield 65 % IR (KBr cm⁻¹): 1710 (CO) 1687 (CN) 1580 (CC) 806 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 2.6 (s, 6H, (CH₃)₂) 3.2 (s, 1H, CH-Ar) 3.7 (s, 2H, CH₂) 7.1-8.0 (m, 8H, Ar-H) 9.1 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 35.66, 40.31, 55.12, 114.23, 128.71, 134.41, 148.06, 167.56, 171.06. MS: m/z 431 (m⁺, 15). Calculated for C₁₉H₁₈N₅OS₂Cl (%); C, 52.83; H, 4.20; N, 16.21; found (%); C, 52.82; H, 4.17; N, 16.20.

3-[3-(4-chlorophenyl)-5-mercapto-4*H*-1,2,4-triazol-4-yl]-2-(2-furyl)-1,3-thiazolidin-4-one (3g).

mp 305-2°C yield 62% IR (KBr cm⁻¹): 1720 (CO) 1686 (CN) 1586 (CC) 806 (CCl). ¹H NMR (400 MHz, CDCl₃): δ 3.3 (s, 1H, CH-Ar) 3.6 (s, 2H, CH₂) 7.0-8.0 (m, 7H, Ar-H) 9.2 (s, 1H, SH). ¹³C NMR (40 MHz, DMSO-d₆): δ 33.33, 54.82, 106.71, 110.62, 128.91, 134.31, 142.11, 148.01, 151.61, 167.51, 171.00. MS: m/z 378 (m⁺, 18). Calculated for C₁₅H₁₁N₄O₂S₂Cl (%); C, 47.55; H, 2.93; N, 14.79; found (%); C, 47.50; H, 2.91; N, 14.73.

RESULTS AND DISCUSSION

All the title compounds bioactivity was screened by the method contact poison and stomach poison. A stock solution of the title compounds (1000ppm) in DMSO was used for preparing various concentrations for bioactivity screening. The compounds **2b**, **2d**, **2e**, **3b**, **3d** and **3e** showed 60-80% mortality against *Heliothis armigera* at the concentration of 500ppm. The insecticidal activity decreases clearly when the concentration was decreased. The results are tabulated in **Table 1** and **2**.

Vijay Kumar Tirlapur *et al*

Sl.No	Test sample	Dose concentration	Mortality Rate			Larval mortality (%)		
		(ppm)	24hrs	48hrs	72hrs	24hrs	48hrs	72hrs
1	2a	500	01	02	02	10	20	20
2	2Ъ	500	08	07	07	80	70	70
3	2c	500	02	04	03	20	40	30
4	2đ	500	07	08	07	70	80	70
5	2e	500	08	08	07	80	80	70
6	2f	500	03	04	03	30	40	30
7	2g	500	02	03	04	20	30	40
8	3a	500	01	02	02	10	20	20
9	3Ъ	500	07	08	07	70	80	70
10	3c	500	02	03	02	20	30	20
11	3d	500	07	08	07	70	80	70
12	3e	500	08	07	07	80	70	70
13	3f	500	02	03	03	20	30	20
14	3g	500	03	02	02	30	20	20
15	Endosulfan	500	08	08	09	80	80	90
	(Std).							
16	UTC	500	00	01	02	00	10	20
	Tab	ble 2. Bioefficacy testing o	f compou	nds by st	omach p	ooison m	ethod	
Sl.No	Test sample	Dose concentration	ncentration Mortality Rate			Larval mortality (%)		
		(nnm)	(Per 10 Larvae)		24hus 49hus 72hus			
		(PPiiii)	24015	401115	/2015	24015	401115	/2015
1	2a	500	01	02	03	10	20	30
2	2a 2b	500 500	01 07	02 08	03 07	10 70	20 80	30 70
2 3	2a 2b 2c	500 500 500	01 07 02	02 08 02	03 07 03	10 70 20	20 80 20	30 70 30
1 2 3 4	2a 2b 2c 2d	500 500 500 500	01 07 02 08	02 08 02 07	03 07 03 07	10 70 20 80	20 80 20 70	30 70 30 70
1 2 3 4 5	2a 2b 2c 2d 2e	500 500 500 500 500 500	01 07 02 08 08	02 08 02 07 07	03 07 03 07 07	10 70 20 80 80	20 80 20 70 70	30 70 30 70 70 70
1 2 3 4 5 6	2a 2b 2c 2d 2e 2f	500 500 500 500 500 500	01 07 02 08 08 03	02 08 02 07 07 07 02	03 07 03 07 07 07 03	10 70 20 80 80 30	20 80 20 70 70 20	30 70 30 70 70 70 30
2 3 4 5 6 7	2a 2b 2c 2d 2e 2f 2g	500 500 500 500 500 500 500	01 07 02 08 08 03 02	02 08 02 07 07 02 03	03 07 03 07 07 07 03 04	10 70 20 80 80 30 20	20 80 20 70 70 20 30	30 70 30 70 70 30 40
2 3 4 5 6 7 8	2a 2b 2c 2d 2e 2f 2g 3a	500 500 500 500 500 500 500 500	01 07 02 08 08 03 02 01	02 08 02 07 07 02 03 03	03 07 03 07 07 07 03 04 02	10 70 20 80 80 30 20 10	20 80 20 70 70 20 30 30	30 70 30 70 70 30 40 20
2 3 4 5 6 7 8 9	2a 2b 2c 2d 2e 2f 2g 3a 3b	500 500 500 500 500 500 500 500 500	01 07 02 08 08 03 02 01 08	02 08 02 07 07 02 03 03 03 08	03 07 03 07 07 07 03 04 02 07	10 70 20 80 80 30 20 10 80	20 80 20 70 70 20 30 30 80	30 70 30 70 70 30 40 20 70
1 2 3 4 5 6 7 8 9 10	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c	500 500 500 500 500 500 500 500 500 500	01 07 02 08 08 03 02 01 08 03	02 08 02 07 07 02 03 03 03 08 03	03 07 03 07 07 07 03 04 02 07 02	10 70 20 80 80 30 20 10 80 30	20 80 20 70 70 20 30 30 80 30	30 70 30 70 70 30 40 20 70 20
1 2 3 4 5 6 7 8 9 10 11	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d	500 500 500 500 500 500 500 500 500 500	01 07 02 08 08 03 02 01 08 03 07	02 08 02 07 07 02 03 03 03 08 03 08	03 07 03 07 07 07 03 04 02 07 02 08	10 70 20 80 30 20 10 80 30 70	20 80 20 70 70 20 30 30 80 30 80	30 70 30 70 70 30 40 20 70 20 80
1 2 3 4 5 6 7 8 9 10 11 12	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3e	500 500 500 500 500 500 500 500 500 500	01 07 02 08 03 02 01 08 03 07 08	02 08 02 07 07 02 03 03 03 08 03 08 07	03 07 03 07 07 03 04 02 07 02 08 08	10 70 20 80 30 20 10 80 30 70 80	20 80 20 70 20 30 30 80 30 80 70	30 70 30 70 70 30 40 20 70 20 80 80
1 2 3 4 5 6 7 8 9 10 11 12 13	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3e 3f	500 500 500 500 500 500 500 500 500 500	01 07 02 08 08 03 02 01 08 03 07 08 02	02 08 02 07 07 02 03 03 03 08 03 08 07 02	03 07 03 07 07 03 04 02 07 02 08 08 08 03	10 70 20 80 30 20 10 80 30 70 80 20	20 80 20 70 70 20 30 30 80 30 80 70 20	30 70 30 70 70 30 40 20 70 20 80 80 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3c 3d 3e 3f 3g	500 500 500 500 500 500 500 500 500 500	01 07 02 08 03 02 01 08 03 07 08 02 03	02 08 02 07 07 02 03 03 03 08 03 08 07 02 02	03 07 03 07 07 03 04 02 07 02 08 08 08 03 03	10 70 20 80 30 20 10 80 30 70 80 20 30	20 80 20 70 70 20 30 30 80 30 80 70 20 20 20 20	30 70 30 70 70 30 40 20 70 20 80 80 30 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3c 3d 3e 3f 3g Endosulfan	500 500 500 500 500 500 500 500 500 500	01 07 02 08 03 02 01 08 03 07 08 02 03 08	02 08 02 07 07 02 03 03 03 08 03 08 07 02 02 08	03 07 03 07 07 03 04 02 07 02 08 08 03 03 09	10 70 20 80 30 20 10 80 30 70 80 20 30 80	20 80 20 70 70 20 30 30 80 30 80 70 20 20 80	30 70 30 70 70 30 40 20 70 20 80 80 30 30 90

Table 1	Bioefficacy	testing of	compounds h	v contact	noison method
Table 1.	Difficacy	testing of	compounds b	y contact	poison methou

Pelagia Research Library

Acknowledgements

We express our gratitude to the members of KRE` Society`s Karnataka College of Pharmacy Bidar for the support.

REFERENCES

[1] Vanden Bossche H. J, Steroid Biochem. Molec. Biol. 1992, 42, 45.

[2] Meek, T. D.; J. Enzyme Inhib. 1992, 6, 65.

[3] Toyabe K, Nezu M, Shimazu H, Jpn Kokai Tokkyo Koho Jp, 0641086, Chem. Abstr, 1989,121, 9409q.

[4] Shaber S. J, Flyn K. E, Fujimoto T.T, Eur Pat Ep, 529, 973 Chem. Abstr., 1993, 119, 72612z.

[5] Stankovsky S, Jedlovska E, Spirkova K, Collcct Czech Chem. Commun. 1993, 58, 2211.

[6] Talawar M.B, Laddi U.V, Somannavar Y.S, Benner R.S, Bennur S.C, *Indian J. Heterocycl. Chem.* **1995**, *4*, 297.

[7] Zhang Z.Y, Yan H, *Acta Chimica Sinica* **1987**, *45*, 403.

[8] Talawar M.B, Bennur S.C, Kankanwadi S. K, Patil P. A, Indian J. Pharm Sci. 1995, 57, 194.

[9] Egan A.R, Eur. Pat. Appl. EP 478,195 Chem. Abstr, 1992, 118, 131213d.

[10] Umehara T, Kohai Tokkyo Koho JP, 03,220,177 Chem. Abstr, 1992, 118, 21926f.

[11] Tanikawa K, PCT Int. Appl. WO 91 16,314 Chem. Abstr, 1992, 118, 106307j.

[12] Siddiqui N, Deepanjali, Arshad F, Arpana R, Indian J. Heterocycl. Chem. 2007, 16, 403.

[13] Srivastava S.K, Soumya S, and Srivastava S.D, Indian J. Chem. 2002, 41B, 1937.

[14] Vijay Kumar T, Amol Y.G, Kashinath N, and Poul B.N, Organic Chemistry An Indian journal, 2009, 5(3), 325.