

Pelagia Research Library
ISSN : 0976-8505 CODEN (USA): CSHIA5

Synthesis and Characterization of Assorted Heterocycles Based 3-(9Hcarbazol-9-yl) Propane Hydrazide

Talaat I. El-Emary ${ }^{1}$ and Hassan A K Abd El-Aal ${ }^{1}$ and Shabaan K Mohamed ${ }^{2 *}$

${ }^{1}$ Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
${ }^{2}$ Manchester Metropolitan University, Faculty of Science \& Engineering, School of Healthcare Science, John Dalton Building, Oxford Road,Manchester,M1 5GD, England

Abstract

Efficient methodology for the synthesis of unrecorded series of heterocycles based carbazole sub-structure is reported. Carbazole heterocycles have been synthesized by employing 3-(9H-carbazol-9-yl)propanoic acid 1 as starting material. The precursor 3-(9H-carbazol-9-yl)propanehydrazide 3 was synthesized by reaction of ethyl 3-(9Hcarbazol-9-yl)propanoate 2 with hydrazine hydrate in ethanol. The structures of synthesized compounds were confirmed on the basis of their elemental analysis and spectral results (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$).

Keywords: 3-(9H-carbazol-9-yl)propanehydrazide, Aromatic Schiff's bases, Heterocycles

INTRODUCTION

Carbazole based heterocycles occur in numerous natural alkaloids [1and 2] and pharmaceutical compounds [3]. They exhibited a broad spectrum of biological activities (Figure 1) [4] such as: antiplasmodial, cytotoxic, antibacterial, antiproliferative, antimalarial and anticancer activities [5]. These pharmacological properties of carbazole containing compounds had attracted worldwide attention in the last few decades to their abundance in natural products and drugs [6,7]. The utility of Carbazole derivatives also has been shown in several industrial applications such as optoelectronics [8,9], dye-sensitized solar cells [10] and photochromic dyes [11]. Consequently, the development of direct, concise, and economical methods is currently a popular research area particularly for this class of compounds still remains an academic challenge.

Aspidospermidine
(3aR,10bR)-3aß-Ethyl-2,3,3a,4,5,5a⿱, 6, 11,12,13aß-decahydro- 1 H -indolizino $[8,1 c d]$ carbazole

Staurosporine

Girinimbine
3,3,5Trimethyl1 1Hpyrano[3,2a]carbazole

A: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{CHO}$
B: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{CHO}$
C: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CHO}$
D: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CHO}, \mathrm{R}^{3}=$ geranyl

Glybmine (A-C)

A: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{COCH}_{3}, \mathrm{R}^{5}=\mathrm{CH}_{3}$
B: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{H}, \mathrm{R}^{4}=$ isopentenyl, $\mathrm{R}^{5}=\mathrm{COCH}_{3}$ C: $\mathrm{R}^{1}=\mathrm{R}^{5}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{H}, \mathrm{R}^{4}=$ isopentenyl

Figure 1: Carbazole motifs based natural products and drugs.

Several reports have been appeared on the syntheses of carbazole derivatives in connection with the search for newer physiologically active compounds. A large number of carbazole alkaloids have been isolated from Rutaceae family [12] are accomplished diversified pharmacological activities. The carbazole based compounds hyellazoles [13] and carbazomycins have been isolated from two completely non-related biological systems [14], a blue green alga of Hyellacaespitosa and an actinomycete Streptoverticillium ehimense respectively are found to be useful antibacterial, antifungal and antibiotic agents [15].

The fused heterocycles with the carbazole scaffolds are also accomplished for their biological activities. The sclerotic of Aspergillus tubingensis contains two carbazoles with completely different structures namely; tubingensin A and tubingensin B have also been reported antiviral and cytotoxic [16] activities respectively. The anti-inflammatory activity of Caprofen found to inhibit the neutrophile macrophage function. The Nincazole[17] have been reported that the novel neuroleptic and antipyretic agents. Etodolaca class of drugs called non-steroidal anti-inflammatory drugs (NSAID). Other members of this class include ibuprofen, naproxen, indomethain and nubumetone are used for the management of mild to moderate pain, fever and inflammation [18]. The remarkable biological activities of carbazole based heterocycles encouraged us to synthesize novel sets of carbazoles with structural modification in connection with our previous studies in the synthesis of diverse of biological significance heterocycles [19-30].

MATERIALS AND METHODS

General: All reagents were purchased from Merck, Sigma or Aldrich Chemical Co. and were used without further purification. Melting points were measured on a digital Gallenkamp capillary melting point apparatus and are uncorrected. The IR spectra were determined with a Pye Unicam SP3-100 spectrophotometer using the KBr wafer technique $\left(v \mathrm{~cm}^{-1}\right)$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX Joel 400 MHz FT-NMR spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ at Manchester Metropolitan University, Faculty of Science \& Engineering, School of Healthcare Science, John Dalton Building, Oxford Road, Manchester,M1 5GD, England, DMSO $\square d_{6}$ solvents with TMS as internal standard. Chemical shifts (δ) and J values are reported in ppm and Hz , respectively. Elemental analyses were performed on a Perkin-Elmer 2400 Series II analyzer. The mass spectra were performed by JEOL JMS 600 spectrometer at an ionizing potential of 70 eV using the direct inlet system. Reactions were monitored by thin layer chromatography (TLC) using pre-coated silica plates visualized with UV light. Flash column chromatography was performed on silica gel and basic alumina.

3-(9H-carbazol-9-yl)propanehydrazide (3).

A mixture of the ethyl 3-(9H-carbazol-9-yl)propanoate (2) (2.7g, 10 mmol) and hydrazine (5 mL) in ethanol (20 mL) was heated under reflux for 5 h . The solid product that formed was filtered, washed with water, dried and crystallized from ethanol to give white crystals of 3 in 76%; mp $150-2{ }^{\circ} \mathrm{C}$; ir: NH 3312 , CH aromatic 3059 , CH aliphatic $2994, \mathrm{C}=\mathrm{O}$ $1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right)$ 2.62(t, 2H, CH $), 4.32\left(\mathrm{NH}_{2}\right), 4.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.38-8.55(\mathrm{~m}, 8 \mathrm{CH}-\mathrm{Ar}), 9.40(\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6, DEPT) $\delta(\mathrm{ppm}): 33.50,39.55,109.84,119.40,120.48,120.72,122.41,122.69,125.96$, 126.25, 126.53, 140.25, 169.93; ms m/z $253(\mathrm{M}+$) as molecular ion peak and at $\mathrm{m} / \mathrm{z}=238$ as base peak. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ (253.3): C, 71.13%; H, 5.97%; N, 16.59\%. Found: C, $71.48 \% ; \mathrm{H}, 6.13 \% ; \mathrm{N}, 16.39 \%$.
1-(3-(9H-carbazol-9-yl)propanoyl)pyrazolidine-3,5-dione (4). A mixture of 3-(9H-carbazol-9-yl)propanehydrazide (3) $(0.55 \mathrm{~g}, 2 \mathrm{mmol})$ and diethyl malonate $(0.32 \mathrm{~g}, 2 \mathrm{mmol})$ in absolute ethanol $(10 \mathrm{~mL})$ / acetic acid $(10 \mathrm{~mL})$ was heated under reflux for 8 h . The reaction mixture was then poured with stirring into ice-cold water and the obtained precipitate was collected by filtration, washed with water and dried. Crystallization from diluted DMF-water (1:3) gave white crystals of 4 in 62%; mp $280-2^{\circ} \mathrm{C}$; ir: NH 3214 , CH aromatic 3047 , CH aliphatic $2950, \mathrm{C}=\mathrm{O} 1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.67\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-8.39(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.95(\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$, DEPT) $\delta(\mathrm{ppm}): 31.93,34.20,39.05,109.79,109.92,119.37,119.46,124.91,124.91,125.20$, 126.20, 126.27, 128.39, 134.0, 139.17, 167.52, 173.32; ms m/z $321(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (321.3): C, 67.28%; H, 4.71%; N, 13.08\%. Found: C, 67.56%; H, 4.82%; N, 13.25%.
1-(3-(9H-carbazol-9-yl)propanoyl)-5-methylpyrazolidin-3-one (5). A mixture of 3-(9H-carbazol-9-yl) propanehydrazide (3) ($0.55 \mathrm{~g}, 2 \mathrm{mmol}$) and ethyl acetoacetate $(0.26 \mathrm{~g}, 2 \mathrm{mmol})$ in absolute ethanol $(10 \mathrm{~mL})$ / acetic acid (10 mL) was heated under reflux for 8 h . The reaction mixture was then poured into ice-cold water and the obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water (1:3) to give white crystals of 5 in 64%; mp 292- $4^{\circ} \mathrm{C}$; ir: NH 3215, CH aromatic 3047, CH aliphatic 2950, 2C=O 1702, 1660
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-8.32(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.15(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$, DEPT) $\delta(\mathrm{ppm}): 33.048,39.59,39.89,109.43,109.87,119.58,120.83,122.73$, 126.31, $140.08,140.19,154.84,164.62 . \mathrm{ms} \mathrm{m} / \mathrm{z} 319(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (319.3): C, 71.46%; H, 5.37%; N, 13.16%. Found: C, 71.23%; H, 5.52%; N, 13.32%.
3-(9H-carbazol-9-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)propan-1-one (6). A mixture of 3-(9H-carbazol-9-yl) propanehydrazide (3) $(0.55 \mathrm{~g}, 2 \mathrm{mmol})$ and acetylacetone $(0.2 \mathrm{~g}, 2 \mathrm{mmol})$ in absolute ethanol $(10 \mathrm{~mL}) /$ acetic acid $(10 \mathrm{~mL})$ was heated under reflux for 8 h . The reaction mixture was then poured into ice-cold water and the obtained precipitate was collected by filtration, washed with water, dried and crystallized from diluted ethanol to give 6 in 58%; mp $155-7^{\circ} \mathrm{C}$; ir: CH aromatic 3049 , CH aliphatic 2941, $\mathrm{C}=\mathrm{O} 1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}^{-} \mathrm{d}_{6}\right) 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.77\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-8.08(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.96\left(\mathrm{CH}-\right.$ pyrazole). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $_{6}$, DEPT) $\delta(\mathrm{ppm}): 24.79,39.95,109.43,109.87,119.58,120.83,122.73,126.31,140.05,154.84,164.62$; $\mathrm{ms} \mathrm{m} / \mathrm{z} 317(\mathrm{M}+)$ as molecular ion peak and base peak Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (317.4): C, $75.69 \% ; \mathrm{H}, 6.03 \%$; N, 13.24%. Found: C, 75.38%; H, 6.24%; N, 13.26\%.

5-(2-(9H-carbazol-9-yl)ethyl)-1,3,4-oxadiazole-2-(3H)-thione (7). A mixture of 3-(9H-carbazol-9-yl) propanehydrazide $3(1.09 \mathrm{~g}, 4 \mathrm{mmol})$ and carbon disulfide (3 ml) in pyridine (15 mL) was heated under reflux on a water-bath $\left(60-70^{\circ} \mathrm{C}\right)$ overnight. The excess carbon disulfide was removed under reduced pressure and the reaction mixture was then poured into ice-cold water and the obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water (1:1) to give 7 in 66%; mp $196-8^{\circ} \mathrm{C}$; ir: $\mathrm{NH}, 3197, \mathrm{CH}$ aromatic 3050 , CH aliphatic $2940 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-8.38(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9,95(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH})$ 13C NMR (100 MHz , DMSO-d6, DEPT) $\delta(\mathrm{ppm}): 34.9,51.4,109.6,119.9,121.4,122.8,156.8,188.9$. ms: $\mathrm{m} / \mathrm{z} 295(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$ (295.4): C, 65.06; H, 4.44; N, 5.42. Found: C, 65.38; H, 4.65; N, 5.48.

3-(2-(9H-carbazol-9-yl)ethyl)-4-phenyl-1H-1,2,4-triazole-5(4H)-thione (8)

A mixture of 3-(9H-carbazol-9-yl) propanehydrazide (3) ($1.09 \mathrm{~g}, 4 \mathrm{mmol}$) and phenyl isothiocyanate ($0.54 \mathrm{~g}, 4 \mathrm{mmol}$) in pyridine (15 mL) was heated under reflux for 15 h . After cooling to room temperature, the reaction mixture was then poured into ice-cold water and neutralized using acetic acid. The resulting precipitate was collected by filtration, washed with water and left to dry. Crystallization from diluted dioxane-water gave buff needles of $\mathbf{8}$ in 68% yield; $\%$; mp $250-2{ }^{\circ} \mathrm{C}$; ir: NH 3150 , CH aromatic 3049 , CH aliphatic $2941,2852 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) 2.65(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), 4.28(t, 2H, CH2 $), 6.95-8.36(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$, DEPT) δ ppm: 24.5, 38.75, 39.67, $109.79,118.57,119.52,120.67,121.85,126.27,129.61,134.15,140.85,164.58 . \mathrm{ms} \mathrm{m} / \mathrm{z} 371(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}$ (371.4): C, 71.32; H, 4.90; N, 15.12. Found: C, 71.68; H, 4.12; N, 15.34 .

General procedure for reaction of 3-(9H-carbazol-9-yl)propanehydrazide (3) with aromatic aldehydes. A mixture of 3 -(9H-carbazol-9-yl)propanehydrazide (3) ($1.09 \mathrm{~g}, 4 \mathrm{mmol}$) and appropriate aromatic aldehyde, namely benzaldehyde, 4-chlorobenzaldehyde, 2-hydroxybenzaldehyde, 2-nitrobenzaldehyde, 4-(dimethylamino) benzaldehyde, 3,4-dihydroxybenzaldehyde (4 mmol) was refluxed for 3 h in absolute ethanol (20 mL) in the presence of 5 drops of piperidine. After completion, the reaction mixture was cooled to room temperature and filtered. The crude product was washed with water, dried and recrystallized from the proper solvent to give compounds $\mathbf{9 a - f}$.

N'-benzylidene-3-(9H-carbazol-9-yl)propanehydrazide (9a)

Crystallized from dioxane-water (1:1) to give 9a as white crystals in 68%; mp $226-8{ }^{\circ} \mathrm{C}$; ir: NH 3266 CH aromatic 3046, CH aliphatic 2949, $\left.\mathrm{C}=\mathrm{O} 1678 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right)_{6}\right) 2.72\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.23\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-8.38,8.65(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $9.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$, DEPT) $\delta \mathrm{ppm}: 34.5,35.1,54.8,109.9,119.8,121.4$, 121.7, 122.8, 128.7, 129.6, 131.0, 133.7, 144.2, 167.3. $\mathrm{ms} \mathrm{m} / \mathrm{z} 341(\mathrm{M}+)$ as molecular ion peak and at $\mathrm{m} / \mathrm{z}=238$ as base peak. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (341.4): : C, $77.40 ; \mathrm{H}, 5.61 ; \mathrm{N}, 12.31$. Found: C, 77.68; H, 5.63; N, 12.35.

\mathbf{N}^{\prime}-(4-Chlorobenzylidene)-3-(9H-carbazol-9-yl)propanehydrazide (9b).

Crystallized from dioxane-water (1:1) to give $\mathbf{9 b}$ as yellowish crystals in 71%; mp 202-4 ${ }^{\circ} \mathrm{C}$; ir: NH 3215 CH aromatic 3056, CH aliphatic 2955, $\mathrm{C}=\mathrm{O} 1674 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.33-8.34,8.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$, DEPT) $\delta \mathrm{ppm}: 35.1,56.0,109.6,119.8,121.4,121.7$, 122.8, 128.7, 130.6, 134.7, 144.1, 167.4. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$ (375.8): C, 70.30; H, 4.83; Cl, 9.43; N, 11.18. Found: C, 70.58; H, 4.63; N, 11.32.

N^{\prime}-(2-hydroxybenzylidene)-3-(9H-carbazol-9-yl)propanehydrazide (9c).

Crystallized from dioxane-water (2:1) to give 9c as yellowish-buff crystals in 78%; mp 208-10 ${ }^{\circ} \mathrm{C}$; ir: NH 3255 CH aromatic 3046, CH aliphatic 2949, $\mathrm{C}=\mathrm{O} 1683 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) 2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.75(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 7.33-8.34,8.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$, DEPT) $\delta \mathrm{ppm}: 35.5,56.2$, 109.6, 119.8, 121.4, 121.7, 122.1, 128.7, 130.1, 134.7, 144.2, 167.9. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ (357.4): C, 73.93; H , 5.63; N, 11.76. Found: C, 73.61; H, 5.42; N, 11.48.

\mathbf{N}^{\prime}-(2-nitrobenzylidene)-3-(9H-carbazol-9-yl)propanehydrazide (9d)

Crystallized from dioxane-water (1:3) to give 9d as yellowish needles crystals in 81%; mp $172-4{ }^{\circ} \mathrm{C}$; ir: NH 3185 CH aromatic 3056, CH aliphatic 2955, $\mathrm{C}=\mathrm{O} 1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2), 4.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2), 7.32-$ $8.31(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.45 \mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}-) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$, DEPT) $\delta \mathrm{ppm}: 35.2,55.0,109.7,119.8$, 121.4, 121.7, 122.8, 124.0, 124.2, 128.7, 129.6, 134.7, 144.1, 167.8 Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ (386.4): C, 68.38; H, 4.70; N, 14.50. Found: C, 68.28; H, 4.73; N, 14.52.

$\mathbf{N}^{\mathbf{\prime}}$-(4-(dimethylamino) 3-(9H-carbazol-9-yl)-benzylidene)propanehydrazide (9e)

Crystallized from dioxane to give 9 e as buff crystals in 72%; mp $206-8^{\circ} \mathrm{C}$; ir: NH 3172 , CH aromatic 3047 , CH aliphatic 2959, 2851, $\mathrm{C}=\mathrm{O} 1670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 1.42\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.61\left(\mathrm{CH}_{3}\right), 3.636\left(\mathrm{CH}_{3}\right), 5.65(\mathrm{t}, 3 \mathrm{H}$, CH_{2}), 6.11-7.17 (m, 13H, Ar-H + CH=N), 10.28(NH).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$, DEPT) $\delta \mathrm{ppm}: 35.28,41.56,56.58,109.60,111.95,119.84,121.45,121.70,128.36$, 134.15, 144.50, 153.4, 167.75. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$ (384.4): C, 74.97; H, 6.29; N, 14.57. Found: C, 74.52; H, 6.32; N, 14.73

N^{\prime}-(3,4-dihydroxybenzylidene)-3-(9H-carbazol-9-yl)propanehydrazide (9f)

Crystallized from ethanol-water (1:1) to give 9 f as brownish needles crystals in 58%; mp $242-4^{\circ} \mathrm{C}$; ir: 2 OH 3407 , NH 3210, CH aromatic 3050 , CH aliphatic $2929, \mathrm{C}=\mathrm{O} 1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) 2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.95-8.36(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}-)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}(373.4)$: C, 70.76; H, 5.13; N, 11.25. Found: C, 70.34; H, 5.35; N, 11.38.

9-(2-(1,3,4-oxadiazol-2-yl)ethyl)-9H-carbazole (10) A mixture of 3-(9H-carbazol-9-yl)propanehydrazide $\mathbf{3}$ (1.09 g, $4 \mathrm{mmol})$, triethyl orthoformate $(10 \mathrm{~mL})$ and acetic anhydride (2 mL) was heated under reflux for 5 h . Afterwards, the reaction mixture was evaporated under reduced pressure. The residue was triturated with diluted ethanol. The resulting precipitate was collected, washed, dried and crystallized from ethanol gave buff needles of $\mathbf{1 0}$ in 61% yield; mp 128 $30^{\circ} \mathrm{C}$; ; ir: CH aromatic 3045, CH aliphatic $2954 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 3.42(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2), 4.82\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.32-$ 8.30(m, 9H, Ar-H+ CH oxadiazole), ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$, DEPT) $\delta(\mathrm{ppm}): 24.74,40.32,109.69,110.10$, $110.45,119.93,120.07,121.32,122.53,126.52,126.76,127.27,128.45,129.48,130.25,132.81,164.21,164.82$; ms $\mathrm{m} / \mathrm{z} 263(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (263.3): C, 72.99; H, 4.98; N, 15.96. Found : C, 72.64; H, 4.65; N, 15.48
(Z)-3-(9H-carbazol-9-yl)-N'-(2-oxoindolin-3-ylidene)propanehydrazide (11) A mixture of 3-(9H-carbazol-9-yl) propanehydrazide $3(0.55 \mathrm{~g}, 4 \mathrm{mmol})$ and isatin ($0.3 \mathrm{~g}, 2 \mathrm{mmol}$) in ethanol (10 mL) and acetic acid (2 mL) was heated under for 1 h . The reaction mixture was left to cool at room temperature. The obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water (3:1) to give yellow crystals of $\mathbf{1 1}$ in 82% yield; mp $276-8^{\circ} \mathrm{C}$; ir: NH 3238, CH aromatic 3052 , CH aliphatic $2949,2 \mathrm{C}=\mathrm{O} 1725,1682 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: δ (DMSO-d ${ }_{6}$) $2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.73\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12-8.95(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.90(\mathrm{NH}), 10.30(\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$, DEPT) $\delta(\mathrm{ppm}): 33.03,39.27,110.09,109.89,119.41,120.72,122.66,126.27,140.08,140.18,168.50,169.50 ; \mathrm{ms}$ $\mathrm{m} / \mathrm{z} 283(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}(382.4)$: C, 72.24; $\mathrm{H}, 4.74 ; \mathrm{N}, 14.65$. Found: C, 72.61; H, 4.72; N, 14.38.

3-(9H-carbazol-9-yl)-N'-(3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)ylidene) propanehydrazide (12)

A mixture of 3-(9H-carbazol-9-yl)propanehydrazide 3 ($0.55 \mathrm{~g}, 2 \mathrm{mmol}$) and 3-methyl-1-phenyl-1 H -pyrazole-4,5dione $(0.37 \mathrm{~g} 2 \mathrm{mmol})$ in absolute ethanol $(10 \mathrm{~mL})$ and acetic acid $(2 \mathrm{~mL})$ was heated under for 5 h . The reaction mixture was left to cool at room temperature. The obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water(1:1) to give orange crystals of $\mathbf{1 2}$ yield 73%; mp $192-4^{\circ} \mathrm{C}$. ; ir: NH 3204 , CH aromatic 3055 , CH aliphatic 2947, $2 \mathrm{C}=\mathrm{O} 1719,1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right){ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$,

DEPT) $\delta(\mathrm{ppm}): 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.57(\mathrm{NH}), 7.19-8.13(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .24 .50$, $39.04,39.25,39.46,66.13,108.51,118.84,120.09,122.01,125.53,127.92,129.12,133.08,139.10,149.66,167.37$; $\mathrm{ms} \mathrm{m} / \mathrm{z} 423(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$ (423.4): C, 70.91; H, 5.00; N, 16.54. Found: C, 70.73 ; H, 5.12; N, 16.36.

1-azido-3-(9H-carbazol-9-yl)propan-1-one (13). A cold solution ($0-5^{\circ} \mathrm{C}$) of sodium nitrite ($0.31 \mathrm{~g}, 45 \mathrm{mmol}$) in water $(15 \mathrm{~mL})$ was added to a suspension of the carbohydrazide $3(1.09 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{HCl}(20 \mathrm{~mL}, 50 \%)$ in an ice bath $\left(0-5^{\circ} \mathrm{C}\right)$ over a period of 30 min . The reaction mixture was left to stir for 1 h at the same temperature and then poured into excess water. The precipitate was filtered off, washed with water, air dried and kept without crystallization for the next step; yield 73%; mp 82-4 ${ }^{\circ} \mathrm{C}$; ir: $3050\left(\mathrm{CH}\right.$ arom.), $2900\left(\mathrm{CH}\right.$ aliph.), 2250,215O ($\left.\mathrm{N}_{3}\right), 1680(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Ethyl 2-(9H-carbazol-9-yl)ethylcarbamate (14) A solution of 3 ($1.09 \mathrm{~g}, 4 \mathrm{mmol}$) in absolute ethanol (15 mL) was heated under reflux for 1 h . After cooling to room temperature, the reaction mixture was diluted with cold water (20 mL) and the separated product was filtered off, washed with water and dried. Crystallization from diluted ethanol gave carbamate 14 in 58% yield 57%, mp $172-4^{\circ} \mathrm{C}$. ; ir: NH $3204, \mathrm{CH}$ aromatic $3055, \mathrm{CH}$ aliphatic $2947, \mathrm{C}=\mathrm{O} 1729 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ nmr: δ
$1.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 4.13\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37-8.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})\left(\mathrm{DMSO}-\mathrm{d}_{6}\right){ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$, DEPT) δ ppm: 13.82, 29.71, 39.43, 54.23, 109.6, 119.8, 121.4, 121.7, 122.8, 134.1, 157.62. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (282.4): C, 72.32; H, 6.43; N, 9.92. Found: C, 72.76; H, 6.23; N, 9.73.

\mathbf{N}^{\prime}-(bis(4-(diethylamino)phenyl)methylene)-3-(9H-carbazol-9-yl)propanehydrazide (15)

A mixture of $3(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ and bis(4-(diethylamino)phenyl)methanone ($0.65 \mathrm{~g}, 2 \mathrm{mmol}$) in ethanol contaning few drops of piperidine was heated under reflux for 6 h ., pour into water acidified with diluted HCl , left at room temperature for few days, decant and triturated the residue with ethanol. The solid that separated was collected by filtration and crystallized from dioxan-water (3:1) to give brownish crytals of $\mathbf{1 5}$ in 52% yield; Ir: ir: NH 3182, CH aromatic 3049, CH aliphatic 2949, 2871, C=O $1670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) 1.10-1.26\left(\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}(\mathrm{ethyl})\right)\right.$, $2.69\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.44\left(\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{CH}_{2}(\mathrm{ethyl})\right), 4.62\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.69-8.87(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.88(\mathrm{NH}) .{ }^{13} \mathrm{C}\right.$ NMR (100 MHz, DMSO-d $_{6}$, DEPT) $\delta(\mathrm{ppm}) 12.6,20.70,38.93,109.52,109.68,110.22,119.17,120.49,122.46,126.03,132.16$, 139.98, 168.02, 168.93. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}$ (559.7): C, $77.25 ; \mathrm{H}, 7.38 ; \mathrm{N}, 12.51$. Found: C, 77.61; H, 7.31; N, 12.34

1-(5-amino-3-phenyl-1H-pyrazol-1-yl)-3-(9H-carbazol-9-yl)propan-1-one (16)

A mixture of 3-(9H-carbazol-9-yl)propanehydrazide $3(1.09 \mathrm{~g}, 4 \mathrm{mmol})$ and benzoyl cyanide (4 mmol) in absolute ethanol $(20 \mathrm{~mL})$ containing few drops of piperidine was heated under for 10 h . The reaction mixture was left to cool at room temperature for few hours. The obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water(1:1) to give buff crystals of 16 in yield 63%; mp 244-6 ${ }^{\circ} \mathrm{C}$. ; ir: $\mathrm{NH}_{2} 3212, \mathrm{CH}$ aromatic 3047, CH aliphatic 2950, $\mathrm{C}=\mathrm{O} 1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.85\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2), 6.26(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-pyrazole), $7.35-8.38(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$, DEPT) $\delta \mathrm{ppm}: 24.56$, $56.80,109.65,119.80,121.45,121.70,122.85,127.58,128.75,129.20,133.50,134.15,152.38,155.90,172.58$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (380.4): C, 75.77; H, 5.30; N, 14.73. Found: C, 75.38; H, 5.37; N, 14.46.

3-(2-(9H-carbazol-9-yl)ethyl)-1,2,4-triazin-5(2H)-one (17)

A mixture of 3-(9H-carbazol-9-yl)propanehydrazide $3(1.09 \mathrm{~g}, 4 \mathrm{mmol})$ and chloroacetamide (4 mmol) in DMF (15 mL) was heated under reflux for 24 h . The reaction mixture was left to cool, poured into water, left at room temperature for few hours. The obtained precipitate was collected by filtration, washed with water, dried and crystallized from dioxane-water $(3: 1)$ to give buff crystals of $\mathbf{1 7}$ in yield 58%; mp $244-6{ }^{\circ} \mathrm{C}$. ; ir: NH 3418 , CH aromatic 3049 , CH aliphatic 2928, C=O $1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) 2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-8.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, triazinone $), 9.25(\mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}\right.$, DMSO-d $_{6}$, DEPT) $\delta \mathrm{ppm}: 30.51,39.70,109.65,110.71$, 118.26, 119.94, 119.94, 121.45, 122.82, 125.29, 134.15, 134.15, 143.50, 156.48, 156.48, 162.25. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}(290.3): \mathrm{C}, 70.33 ; \mathrm{H}, 4.86$; N, 19.30. Found: C, 70.62; H, 4.63; N, 19.34.

N'-(3-(9H-carbazol-9-yl)propanoyl)benzohydrazide (18)

A mixture of 3-(9H-carbazol-9-yl)propanehydrazide $3(1.09 \mathrm{~g}, 4 \mathrm{mmol}$) and benzoyl chloride ($0.56 \mathrm{~g}, 4 \mathrm{mmol}$) in dry dioxane (15 mL) was heated under reflux for 4 h . The reaction mixture was left to cool, poured into water. The
obtained precipitate was collected by filtration, washed with water, dried and crystallized from ethanol to give gray crystals of $\mathbf{1 8}$ in yield 63%; mp 236-8 ${ }^{\circ} \mathrm{C}$. ; ir: NH 3184, CH aromatic $3067,3018 \mathrm{CH}$ aliphatic 2949, 2862, C=O 1671 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ nmr: $\delta\left(\mathrm{DMSO}_{6}\right) .2 .65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.23\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.2(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 7.34-8.13(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.2(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$, DEPT) $\delta \mathrm{ppm}: 34.93,54.57,109.56,121.92,122.53,127.8,4132,56,134.38$, 164.56, 177.50. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ (357.4): C, 73.93 ; H, 5.36; N, 11.76. Found: C, 74.12; H, 5.33; N, 11.56

2-(2-(9H-carbazol-9-yl)ethyl)-5-phenyl-1,3,4-oxadiazole (19)

A sample ($0.72 \mathrm{~g}, 2 \mathrm{mmol}$) of $\mathbf{1 8}$ in $\mathrm{POCl}_{3}(10 \mathrm{~mL})$ was heated on a boiling water- bath for 4 h . The reaction mixture was left to cool, poured into water. The obtained precipitate was collected by filtration, washed with water, dried and crystallized twice from ethanol and from dioxane- water (1:1) to give white crystals of 19 in yield 61%; mp $144-6^{\circ} \mathrm{C}$. ; ir: CH aromatic 3045 CH aliphatic 2953, 2921, $2850 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right)$ 3.13(t, 2H, CH $), 4.22\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.37-8.39 (13H, Ar-H) ${ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$, DEPT) $\delta \mathrm{ppm}: 24.74,39.10,109.34,109.69,119.30,120.56$, 122.53, 125.99, 126.52, 129.48, 164.21, 164.82. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ (339.4): C, 77.86; H, 5.05; N, 12.38 . Found: C, 77.62, H, 5.21; N, 12.33.

2-(3-(9H-carbazol-9-yl)propanoyl)hydrazinecarbothioamide (20)

A mixture of $3(1.09 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathrm{KSCN}(0.38 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathrm{HCl}(10 \mathrm{~mL})$ in ethanol $(10 \mathrm{~mL})$ was heated on a boiling water- bath for 8 h . The reaction mixture was left to cool and taken directly in situ for the next step without separation and crystallization.

5-(2-(9H-carbazol-9-yl)ethyl)-3H-1,2,4-triazole-3-thione (21)

A solution of $\mathrm{NaOH}(15 \mathrm{~mL}, 10 \mathrm{~N})$ was added to compound 20 (resulting from the previous step) and the mixture was heated under reflux for 2 h , cooled, poured into water, neutralized with HCl . The resulting precipitated was collected by filtration, washed with water, dried and crystallized from ethanol-water (1:1) to give white crystals of 21 in an overall yield $66 \%, \mathrm{mp}: 146-8{ }^{\circ} \mathrm{C}$; ir: CH aromatic 3050 CH aliphatic 2942, 2921,2671 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ $2.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-8.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}){ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$, DEPT) $\delta \mathrm{ppm}: 34.85$, $51.25,109.61,119.82,121.73,122.84,134.15,178.26,230.45$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}(292.4): \mathrm{C}, 65.73$; H, 4.14; N, 19.16. Found: C, 65.42; H, 4.23; N, 19.27.

3-(2-(9H-carbazol-9-yl)ethyl)-4-amino-1H-1,2,4-triazole-5(4H)-thione (22)

A mixture of compound $10(4 \mathrm{mmol})$ and excess hydrazine hydrate $(2 \mathrm{~mL})$ was heated under reflux without solvent for 15 minutes and then absolute ethanol $(15 \mathrm{~mL})$ was added and the refluxing was completed for 3 h . The precipitate that obtained after cooling and neutralization with HCl was collected by filtration, washed with water, dried and crystallized from ethanol to give pinksh crystals of 22 in 62% yield; $\mathrm{mp} 210-2{ }^{\circ} \mathrm{C}$; ir: $\mathrm{NH}_{2}+\mathrm{NH} 3337-3146, \mathrm{CH}$ aromatic 3048 CH aliphatic $2950 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}: \delta\left(\mathrm{DMSO}_{6}\right) 2.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.35-8.36(\mathrm{~m}, 8 \mathrm{H}$, $\operatorname{Ar}-\mathrm{H}), 11.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}) .{ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$, DEPT) $\delta \mathrm{ppm}: 24.54,56.82,109.65,119.82,121.45,121.78$, $154.50,167.68, \mathrm{~ms} \mathrm{~m} / \mathrm{z} 309(\mathrm{M}+)$ as molecular ion peak and base peak. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{~S}$ (309.4): C, C, 62.11; H, 4.89; N, 22.64. Found: C, 62.34; H, 4.62; N, 22.54;

RESULTS AND DISCUSSION

The starting 3-(9H-carbazol-9-yl)propanehydrazide $\mathbf{3}$ was readily obtained by a two-steps one-pot procedure. Esterification of 3-(9H-carbazol-9-yl)propanoic acid $\mathbf{1}$ was carried out by heating in a mixture of ethanol and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave the intermediate ethyl 3-(9H-carbazol-9-yl)propanoate 2, which was immediately treated with hydrazine hydrate in ethanol under reflux conditions to provide the desired carbazole hydrazide $\mathbf{3}$ in good overall yields (Scheme 1).

Subjecting the carbohydrazide $\mathbf{3}$ to react with some active methylene compounds such as diethyl malonate, ethyl acetoacetate and acetylacetone in ethanol containing acetic acid under reflux conditions afforded, 1-(3-(9H-carbazol-9-yl)propanoyl)pyrazolidine-3,5-dione, 1-(3-(9H-carbazol-9-yl)propanoyl)-5-methylpyrazolidin-3-one and 3-(9H-carbazol-9-yl)-1-(3,5-dimethyl-1 H -pyrazol-1-yl)propan-1-one (4-6) respectively (Scheme 2). Reaction of the carbohydrazide 3 with carbon disulfide in pyridine at $60-70^{\circ} \mathrm{C}$ and with phenyl isothiocyanate in refluxing ethanol gave 5-(2-(9H-carbazol-9-yl)ethyl)-1,3,4-oxadiazole-2-(3H)-thione (7) and 5-(2-(9H-carbazol-9-yl)ethyl)-N-phenyl-1,3,4-thiadiazol-2-amine (8) respectively (Scheme 2).

Scheme 1: Reagents and conditions: (i) $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$, reflux, 3 h , (ii) $\mathrm{N}_{2} \mathrm{H}_{4} / \mathrm{EtOH}$, reflux, 4 h .

Scheme 2: Reagents and conditions: (i) $\mathrm{CH}_{2}(\mathrm{COOEt}) /$ /Abs. Ethanol, AcOH , reflux, $12 \mathrm{~h},(\mathrm{iii}) \mathrm{CH}_{2}\left(\mathrm{COCH}_{3}\right)(\mathrm{COOEt}) /$ Abs. Ethanol, AcOH , reflux, 10 h , (iii) $\mathrm{CH}_{2}\left(\mathrm{COCH}_{3}\right)_{2} /$ Abs. Ethanol, AcOH, reflux, 10 h , (iv) $\mathrm{CS}_{2} /$ Pridine, reflux, $60-70 \mathrm{C}$, overnight, (v) PhNCS/ EtOH, reflux, 15 h .

Condensation of the carbohydrazide $\mathbf{3}$ with some aromatic aldehydes, namely, benzaldeyde, 4-chlorobenzaldeyde, 2-hydroxybenzaldehyde, 4-nitrobenzaldehyde, 4-N,N-dimethylbenzaldehyde, 3,4-dihydroxybenzaldehyde in refluxing ethanol containing catalytic amount of piperidine gave the substituted benzylidine hydrazides 9a-f respectively (Scheme 3). The formation of 9-(2-(1,3,4-oxadiazol-2-yl)ethyl)-9H-carbazole (10) was achieved by refluxing carbohydrazide $\mathbf{3}$ with triethyl orthoformate in presence of acetic anhydride. The carbohydrazide $\mathbf{3}$ upon refluxing with isatin in ethanol-acetic acid mixture gave rise to formation of 3-(9H-carbazol-9-yl)- N^{\prime}-(2-oxoindolin-

3-ylidene)propanehydrazide (11). Similarly, refluxing of $\mathbf{3}$ with 3-methyl-1-phenyl-1 H -pyrazole-4,5-dione in boiling ethanol-acetic acid mixture produce 3-(9H-carbazol-9-yl)-N'-(3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene) propanehydrazide (12).
Treatment of carbohydrazide 3 with nitrous at $0-5^{\circ} \mathrm{C}$ acid furnished the corresponding 3-(9H-carbazol-9-yl)propanoyl azide 13. Refluxing of the resulting carboazide (13) in absolute ethanol gave ethyl 2 -(9 H -carbazol-9-yl)ethylcarbamate (14) (Scheme 3). Condensation of the carbohydrazide 3 with bis(4-(diethylamino)phenyl)methanone in boiling ethanol containing catalytic amount of piperidine lead to the formation of N^{\prime}-(bis(4-(diethylamino)phenyl)methylene)-3-(9H-carbazol-9-yl)propanehydrazide (15) (Scheme 3).

Scheme 3: Reagents and conditions: (i) $\mathrm{ArCHO} / \mathrm{Piperidine} / \mathrm{EtOH}$, reflux, 3 h , (ii) $\mathrm{CH}(\mathrm{OEt})_{3} / \mathrm{Ac}_{2} \mathrm{O}$, reflux, 5 h , (iii) Isatin/EtOH + AcOH , reflux, 4 h,(iv) 3-methyl-1-phenyl-1 H-pyrazole-4,5-dione/ $\mathrm{EtOH}+\mathrm{AcOH}$, reflux, $4 \mathrm{~h}(\mathrm{v}) \mathrm{NaNO}_{2} / \mathrm{HCl}, 0-5^{\circ} \mathrm{C},(\mathrm{vi}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, reflux, 6 h (vii) bis(4-(diethylamino)phenyl)methanone/ ethanol, pipredine, reflux 3 h .

Allowing the carbohydrazide 3 to interact with benzoyl cyanide in boiling ethanol containing catalytic amount of piperidine as a basic catalyst for 10 h give rising to the formation of 1-(5-amino-3-phenyl-1 H -pyrazol-1-yl)-3-(9H-carbazol-9-yl)propan-1-one (16) (Scheme 4).
The reaction of the carbohydrazide $\mathbf{3}$ with chloroacetamide in refluxing DMF overnight produced 3-(2-(9H-carbazol9 -yl)ethyl)-1,2,4-triazin-5(2H)-one (17) (Scheme 4).
When the carbohydrazide 3 refluxed with benzoyl chloride in dry dioxane for $4 \mathrm{~h} \mathrm{~N}^{\prime}$-(3-(9H-carbazol-9-yl)propanoyl) benzohydrazide (18) was produced (Scheme 4).

Scheme 4. Reagents and conditions: (i) Benzoyl cyanide/ absolute ethanol, reflux, 10 h , (ii) Chloroacetamide/DMF, reflux, 24h, (iii) Benzoyl chloride/ dry dioxane, reflux, 4 h , (iv) POCl_{3}, reflux, 4 h, (v) $\mathrm{KSCN} / \mathrm{HCl}$, reflux, 4 h , (vi) NaOH (10%, aq.).

The later benzohydrazide 18 on heating with phosphoryl chloride for 4 h it gave 2-(2-(9H-carbazol-9-yl)ethyl)-5-phenyl-1,3,4-oxadiazole (19) (Scheme 4).

Interacting the carbohydrazide 3 with potassium thiocyante in refluxing HCl produced an intermediate 2 -($3-(9 \mathrm{H}$-carbazol-9-yl)propanoyl)hydrazinecarbothioamide (20). The later intermediate on boiling in sodium hydroxide (10% aq.) underwent cyclization giving rise to 5-(2-(9H-carbazol-9-yl)ethyl)-4H-1,2,4-triazole-3-thiol (21) (Scheme 4).

Finally, subjecting the oxadiazole 10 to react with hydrazine in refluxing ethanol afforded 5-(2-(9H-carbazol-9-yl) ethyl)-4-amino-4H-1,2,4-triazole-3-thiol (22) (Scheme 5).

The structures of all compounds were deduced via elemental analyses, IR, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$ and MS spectra. Recently, we reported the crystal structure of compounds $(\mathbf{1 , 8 , 9 b}, \mathbf{2 2})$ [31-34].

(22)

Scheme 5: Reagents and conditions: Hydrazine hydrate/ absolute ethanol, reflux, 3h.

CONCLUSION

The aim of this work was to synthesize new set of carbazole derivatives (1-22), bearing a diverse of heterocyles such as pyrazole, oxazole, oxadiazole, thiadizole, triazole, triazine, indoline with expected biological and medicinal importance.

ACKNOWLEDGEMENT

The authors are grateful to the Chemistry department, Faculty of science Assiut University, Assiut, Egypt for the financial support and all the facilities provided during performing this work.

REFERENCES

[1] Fattorusso E, Taglialatela-Scafati O (2008) Modern Alkaloids. (8th edns), Wiley-Vch Verlag Gmbh \& Co. Kgaa, pp. 481.
[2] Fiebig M, Pezzuto JM, Soejarto DD, Kinghorn AD (1985) Koenoline, a further cytotoxic carbazole alkaloid from Murraya koenigii. Phytochemistry 24: 3041.
[3] Broadbent AT, Broadbent HS (1998) The chemistry and pharmacology of indole-3-carbinol (indole-3-methanol) and 3-(methoxymethyl) indole. Curr Med Chem 5: 469-491.
[4] Gillner M, Fernström B, Gustafsson JÅ, Bergman J, Cambillau C (1986) A new structure-affinity relationship for TCDD receptor binding. Chemosphere 15: 1673-1680.
[5] Katritzky AR, Xie L, Cundy D (1995) A Versatile Synthesis of 3-Substituted Indoles. Synth commun 25: 539-551.
[6] Li Y, Gao W (2010) First synthesis of 2-(benzofuran-2-yl)-6, 7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein J Org Chem 6: 966.
[7] Swamy K, Bhuvan KC, Balaraman NN, Pavan KVP (2009) Mitsunobu and Related Reactions: Advances and Applications. Chem Rev 109: 2551.
[8] Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, et al. (2007) A two-photon absorption study of fluorene and carbazole derivatives. The role of the central core and the solvent polarity. Chem Physics Lett 447: 300,
[9] Peng Q, Liu X, Qin Y, Xu J, Li M, et al. (2011) Pyrazino [2, 3-g] quinoxaline-based conjugated copolymers with indolocarbazole coplanar moieties designed for efficient photovoltaic applications. J Mater Chem 21: 7714.
[10] Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K, et al. (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110: 6817.
[11] Billah SMR, Christie RM, Shamey R (2008) Direct coloration of textiles with photochromic dyes. Part 1: Application of spiroindolinonaphthoxazines as disperse dyes to polyester, nylon and acrylic fabrics. Coloration Technology 124: 223-228.
[12] Agarwal S, Filali S, Frohner W, Knoll J, Krahl MP, et al. (2006) Kartsev VG. ICSPF Press, Moscow, 1: 176.
[13] Joshi NN, Martin H, Hoffmann R (1986) Ultrasonics in the metal promoted cycloaddition of α, α^{\prime}-dibromo ketones to 1 , 3-dienes. Tetrahedron letters 27:687-690.
[14] Kapil RS (1971) The Carbazole alkaloids: The alkaloids. Academic PressInc., New York, 273-302.
[15] Sakano K, Ishimaru K, Natamura S (1980) New Antibiotics carbazomycins A and B. J.Antibiot 33: 683-690.
[16] Mark RT, Gloer JB (1989) Three new aflavinines from the sclerotia of Aspergillus tubingensis. Tetrahedron Lett 30: 59655968.
[17] Ghoneim OM, Legere JA, Alexander G, Alexander T, Booth RG (2006) Novel ligands for the human histamine H1 receptor: synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1, 2, 3, 4-tetrahydronaphthalenes. Bioorganic Med Chem 14: 6640-6658.
[18] Lanza FL, Arnold JD (2015) Studies on Anti-Inflammatory Behaviour of Chalconyl, Isoxazolinyl and Pyrazolinyl 1, 2, 3, 4-Tetrahydrocarbazoles. Int J PharmTech Res 8: 183-188.
[19] El-Aal HAKA, El-Emary TI (2014) Efficient synthesis, characterization and biological evaluation of some new atophan carbohydrazide derivatives. J Chem Pharm Res 6: 90.
[20] Aly AA, Hassan AA, El-Shaieb KM, El-Emary TI (2010) New tandem cyclo \square and/or addition reactions between N \square arylisoindolines with benzyne and dimethyl acetylenedicarboxylate. J Heterocyclic Chem 49: 1079.
[21] Moustafa OS, Bader MZA, El-Emary TI (2002) New fused quinoxalines: Synthesis and reactions of pyrimidothienoquinoxaline and oxadizolylthienoquinoxalines. Bull Korean Chem Soc 23: 567.
[22] El-Kashef HS, El-Emary TI, Gasquet M, Timon-David P, Maldonado J, et al. (2000) Synthesis of some new azoles with antiviral potential. Pharmazie 55: 572,
[23] El-Emary TI, Hussein AM, El-Kashef HS (2000) New polycyclic azines derived from pyrazolo [3, 4-b] pyridine. Pharmazie 55: 358.
[24] El-Emary TI, Bakhite EA (1999) Synthesis, reactions and antimicrobial activity of new cyclopenta[e]thieno[2,3-b]pyridines and related heterocyclic systems. Pharmazie 54: 106.
[25] El-Emary TI, El-Dean AKM, El-Kashef HS (1998) The biological activity of new thieno[2,3-c]pyrazole compounds as antioxidants against toxicity of 4-nonylphenol in Clarias gariepinus. Toxicol Rep 53: 383.
[26] Aly MF, El-Naggar GM, El-Emary TI (1994) Synthesis of newly substituted pyrazoles and substituted pyrazolo[3,4-b] pyridines based on 5-amino-3-methyl-1-phenylpyrazole. Tetrahedron Lett 50: 895.
[27] Youssef MSK, Abeed AAO, El-Emary TI (2017) Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents. Heterocycl Commun 23: 55.
[28] Abdel-Mohsen S, El-Emary T (2016) A facile one-pot synthesis of novel 1-substituted 2-(8-hydroxyquinolin-5-yl)-1, 5, 6, 7-tetrahydro-6, 6-dimethyl-4H-indol-4-one derivatives. ARKIVOC 4: 184-192.
[29] Abdel-Mohsen SA, El-Emary TI, El-Kashef HS (2016) Synthesis, anti-inflammatory and antibacterial activities of novel pyrazolo[4,3-g]pteridines. Chem Pharm Bull 64: 476-482.
[30] El-Emary T, El-Kashef H (2013) First synthesis and biological evaluation of indeno [2, 1-e] pyrazolo [3, 4-b] pyrazin-5-one and related derivatives. Eur J Med Chem 62: 478-485.
[31] Kaur M, Mohamed SK, Akkurt M, Jasinski JP, El-Emary TI (2016) Albayati MR. 3-(9H-Carbazol-9-yl) propanoic acid. IUCrData 1: X161787.
[32] Mohamed SK, Mague JT, Akkurt M, El-Emary TI, Albayati MR (2016) 3-[2-(9H-Carbazol-9-yl) ethyl]-4-phenyl-1H-1, 2, 4-triazole-5 (4H)-thione dimethyl sulfoxide monosolvate. IUCrData 1: x161835.
[33] Akkurt M, Jasinski JP, Mohamed SK, El-Emary TI, Albayat MR kCrystal structure of 1-[2-(2,6-dichlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl]propan-2-ol. Acta Crystallogr E Crystallogr Commun 71: 0937-0938.
[34] Mague JT, Mohamed SK, Akkurt M, El-Emary TI, Albayati MR (2016) 3-[2-(9H-Carbazol-9-yl) ethyl]-4-phenyl-1H-1, 2, 4-triazole-5 (4H)-thione dimethyl sulfoxide monosolvate. IUCrData 1: x161855.

