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Introduction 
Pain is a significant medical problem that co-exists with several 
diseases including various types of cancer [1]. Breast cancer cells 
metastasize from the tissue of origin and establish themselves in 
distant parts of the axial skeleton [2]. The cancer cells growing 
in the bone microenvironment cause osteolysis and sensitisation 
of the peripheral nerve endings innervating the bones, thereby 
causing excruciating pain [3]. Breast cancer-induced bone pain 
(BCIBP) causes severe morbidity because of the heterogeneous 
combination of inflammatory, neuropathic and cancer-specific 
components [4]. The existing analgesic/adjuvant medications are 
often insufficiently efficacious to combat this pain condition [5-
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Metastases of breast cancer cells to the axial skeleton causes excruciating pain. 
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due to the interplay of inflammatory, neuropathic and cancer-specific pain 
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stimuli evoked techniques like von Frey assessment and Randall-Selitto test. While 
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8]. Thus it is very important to develop and characterize suitable 
preclinical models of BCIBP so as to assist in drug discovery 
programs aimed at identifying novel compounds having potential 
to mitigate this often intractable pain condition. The rat model 
of Walker 256 breast cancer cell induced bone pain is a highly 
useful preclinical tool for assessment of mechanisms of BCIBP 
and for seeking novel analgesics in the treatments thereof, as 
it mimics key aspects of the human pathophysiology of this 
condition [8-11].

Discussion
Von Frey test using a series of filaments corresponding to different 
levels of forces, and paw pressure test also called as Randall-
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Selitto testing using increasing force delivered via a blunt cone 
shaped pusher, are two of the most common behavioural tests 
employed in assessment of Walker 256 cell induced BCIBP in rats 
[9]. The plantar hind paw of rats, the anatomical region where von 
Frey and Randall-Selitto stimuli are applied, is mainly innervated 
by the tibial nerve and hence tibial bone pain sensations manifest 
as hypersensitivities in the plantar aspect of the hind paws [12-
15]. Hence, the traditional and most commonly used method to 
measure tibial bone pain is assessment in the paws, with hundreds 
of studies prevailing in the literature using this protocol. By using 
intra-tibial injections of complete Freund’s adjuvant in the tibiae 
of female Wistar rats, a study has elegantly established that the 
bone pain induced by activation of tibial nerves directly manifests 
as hind paw skin hypersensitivity [15]. Cutaneous tests like the 
von Frey testing and Randall-Selitto testing detect the current 
levels of pain and have high clinical relevance as used in humans 
[16-21]. 

A study involving the Department of Medicine of the University of 
Florida (Gainesville, USA) has validated that mechanically evoked 
pain is a highly relevant measure of the clinical pain intensity in 
patients with deep pain of muco-skeletal origin [22]. Similarly, 
a study conducted in Edinburgh Cancer Centre (Edinburgh, 
UK) also validated that assessing mechanical allodynia using 
von Frey filaments is a direct measure of cancer induced bone 
pain in humans [23]. Hence assessment of the stimuli evoked 
hypersensitivities in the hind paws is physiologically relevant 
assessment of bone pain. As per the previous studies published in 
journals like PAIN [24-26], The Journal of Pain [27,28], European 
Journal of Pain [29-31], Pain Medicine [32], Molecular Pain 
[33,34], Nature Neuroscience [35] and others, it is a traditional 
practice within the pain research fraternity to test the pain 
hypersensitivities in the paw, following inoculation of cancer cells 
in the tibia, without deploying other measures like gait or weight 
bearing parameters. Along these lines, a recent report suggested 
that a vast majority of around ~90% of the cancer induced bone 
pain studies in the literature using MRMT-1 cells in rats used the 
response evoked by the cutaneous stimuli applied to the foot as 
a measure of bone pain [36]. From the vast literature available on 
Walker 256 cell induced bone pain model in rats, inoculation of 
Walker 256 cell in the tibia always manifests as hypersensitivities 
in the hind paws, without any discordance in paw-tibia correlation 
being reported [8]. The majority of studies in the literature that 
used the Walker 256 breast cancer cell-induced bone pain model 
in rats, used the hind paw as a location to test hypersensitivity 
to evoked pain such as that induced by the von Frey test, rather 
than spontaneous or movement evoked pain [18-45]. There are 
many different studies very recently published, that used Walker 
256 cells to induce bone pain in rats that only used stimuli evoked 
behavioural measures such as von Frey paw withdrawal thresholds 
in the hind paws, but not spontaneous movement evoked or 
weight bearing measures to assess pain hypersensitivities [35-
60]. The vast experience of different laboratories conducting pre-
clinical cancer-pain research around the world with the Walker 
256 cell induced BCIBP model in rats strongly emphasizes on 
the suitability of stimuli evoked hypersensitivities in paws as the 
correct measure of bone pain in this particular model.

However, it is noteworthy that dissociation is observed in 

between skeletal pain behaviors and skin hypersensitivity in a 
male C3H mouse model of intra-femoral injection of NCTC 2472 
osteosarcoma cells [61]. It is known that different types of cell 
lines or tumors exhibit distinct pain behavioral patterns [62]. It is 
the unique interaction between each of the cancers colonising the 
bone and the nerve innervation that predominantly decides the 
nature of pain manifestation [63]. On these grounds, a previous 
study highlighted the fact that neither spontaneous pain nor 
ambulatory pain is the best measure of cancer induced bone pain 
for all models triggered by different cancer cell lines in general 
[62]. It showed that intra-osseous injection of B16-F10 melanoma 
cell line in the femur did not produce either the spontaneous pain 
or the ambulatory pain. The bone pain induced by B16-F10 cell 
line manifested only as hind paw skin hypersensitivity. Similarly, 
C26 colon cancer cell line did not produce spontaneous pain 
behavior. Hence, the spontaneous or ambulatory pain are not 
the universal measures of bone pain at least in some models 
like B16 cell model and C26 cell model. In alignment to this pre-
clinical animal based study, a clinical study of cancer induced 
bone pain also reported that in patients with breakthrough 
pain, which is commonly triggered by a stimulus [64], patients 
were not more likely to experience pain at the weight-bearing 
bone sites, compared to patients without pain [65]. Additionally, 
allodynia and gait behaviours are two independent phenomena. 
Neuropathic pain is one of the key components of cancer induced 
bone pain [4], and allodynia (measured by tests like von Frey) is a 
more reliable measure of the neuropathic pain component, rather 
than gait behaviours (weight bearing or spontaneous pain during 
ambulation) [66]. The changes in gait parameters can typically be 
due to the tendency of animals to avoid allodynia produced by 
contact of the paw with the floor [67]. The gait changes might 
not necessarily relate well to pain hypersensitivities [66-72]. 
There are several evidences that suggest that changes in gait 
parameters like guarding the hind paw during ambulation or 
changes in weight bearing are significantly driven by the adaptive 
changes and psychological influences (pain-avoidance and fear 
due to cognition), rather than the current levels of pain intensity 
[66-82]. Whereas, both the von Frey and Randall-Selitto tests 
that are also used in humans to assess pain hypersensitivities, 
detect the current levels of pain and have high clinical relevance 
[16-21]. This is probably one of the most important reasons 
why large number of published studies used stimuli-evoked 
methods like the von Frey and Randall-Selitto tests to assess pain 
hypersensitivities in the hind paws of animals following unilateral 
tibial inoculation of cancer cells.

Conclusion
The vast literature on Walker 256 cell induced BCIBP model in 
rats strongly suggests that stimuli evoked pain behaviours in the 
hind paws of rats is an appropriate measure of cancer induced 
bone pain in this particular model. However, a complementary 
assessment of measures like ambulatory pain, spontaneous pain 
or pain evoked by weight bearing on the hind paws of rats might 
add more value to the studies in future as these tests might be 
considered relatable to pain assessments in humans.
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