Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Der Chemica Sinica, 2014, 5(1):1-8

Structural and conformational studies of 1-[2-(2-benzyloxyphenyl-5-methyl)-2-oxo-ethyl]-4-dimethylamino pyridinium bromide

P. Sakthivel^a and A. Pasupathy^b

Department of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, India Department of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli, India

ABSTRACT

The title compound crystallizes with the monoclinic space group $P2_{1/c}$. The dihedral angle between the central benzene and the phenyl ring is 77.74(2)°. The dihedral angle between the planes of the pyridine moiety and the 5-methylphenyl group is $87.9(2)^{\circ}$. The pyridinium and dimethyl amino group are in co-planar orientation. The DMAP ring is essentially planar with an average deviation of 1.3° . The 5-methylphenyl ring and the phenyl ring of the benzyloxy group are orthogonal with the dihedral angle of $83.9(2)^{\circ}$.

INTRODUCTION

Pyridinium derivatives exhibit antibacterial and antifungal activities [1]. It has been demonstrated that the human peripheral mononuclear cells isolated from healthy volunteers contain traces of derivatives of pyridinium compounds. 4-Aminopyridine (4AP) has been found to be an efficient drug, affecting potassium permeability and capable of provoking membrane depolarization [2] and is also able to induce an increase in intracellular calcium influx through modulation of the activity of purinergic cationic channels [3]. This drug is also used in the treatment of neurological ailments such as multiple sclerosis (MS), with tests showing that 4AP improves motor function in MS patients [4].

In order to study and explain the behaviour of 4-dimethylamino pyridinium bromide the title compound was subjected to an X-ray crystallographic study. The chemical scheme of the molecule of the compound is given in **Fig. 1.1**

MATERIALS AND METHODS

A solution of 2-benzyloxyphenyl bromide (1.112g; 4 mmol) and DMAP (0.5g, 4 mmol) in dry acetone was refluxed for 30 min. After cooling to room temperature (303K) the solid that separated was filtered and washed with dry acetone and dried in vacuum to a stable salt with 89% of yield (m.p 236-239° C), Quality crystals were obtained using ethanol as solvent.

The chemical scheme of the title compound is shown in Fig 1.1

P. Sakthivel and A. Pasupathy

Intensity Data Collection

X-ray data were collected on a Bruker AXS (Kappa APEX2) CCD area detector using ω and ψ scan mode. A small crystal of size $0.28 \times 0.24 \times 0.16$ mm was chosen and its quality was checked using polarizing microscope. Cell refinement and data reduction were carried out by using APEX2/SAINT-NT [5]. Sets of two standard reflections were monitored for every one hour of exposure during the data collection and there was no noticeable change in the intensity observed. A total of 18549 reflections were collected resulting in 3292 independent reflections of which 2318 had I > 2 σ (I), were considered as observed reflections. The intensities were corrected for Lorentz and polarization effects. Absorption corrections were made with SADABS (Ver.2004/1)[6].

Structure Solutions and Refinement

The analysis over the data set revealed the following set of systematic absences: (i) in the 0 k 0 series, the k odd reflections and (ii) in the h 0 l series, the l odd reflections

The first set of systematic absences revealed 2_1 screw parallel to b-axis. Hence the space group monoclinic, $P2_1/c$ was unambiguously assigned. The structure was solved by direct methods using SIR92 [7] which revealed the positions of all non hydrogen atoms. All the non-hydrogen atoms were refined anisotropically using SHELXL97 [8]. At this stage, the difference Fourier map revealed all hydrogen atoms. After checking their presence in the difference map, H atoms were placed in calculated positions with [C-H=0.93Å and 0.97 Å with 1.2 U_{eq} (C) for all hydrogen atoms and U_{iso} (H)=1.5U_{eq}(C) for methyl hydrogen atoms] in the riding model approximation. The refinement was completed at R=0.0526 for 2318 reflections.

The weighting scheme [9],[10], adopted during the final cycle of refinement is

 $w = 1 / [S^{2} (F_{o}^{2}) + (0.0738P)^{2} + 2.3608P]$ where P=($F_{o}^{2} + 2 F_{c}^{2}) / 3$.

The geometric calculations were performed using the PARST [11][Nardelli, 1983b, 1995]. The crystal data and refinement parameters are summarized in **Table 1.1**. The maximum and minimum values of the residual electron density were 0.31e Å⁻³ and -0.74e Å⁻³.

RESULTS AND DISCUSSION

The structure which contains dimethylamino pyridinium moiety and a benzyloxy phenyl ring connected through an oxoethyl group is shown in the Fig 1.2.

Fig. 1.2 shows the ORTEP view of the molecule drawn at 30% probability displacement ellipsoid level with atom numbering scheme

Fig 1.3. Packing diagram of title compound with C-H..Br interactions and hydrogen is bifurcated

Molecular Geometry and Conformation

The bond lengths and bond angles involving all non hydrogen atoms are presented in Table 1.2 and Table 1.3.

An interesting feature of the pyridinium system is that it has a substantial degree of quinonoidal character since the bond lengths C6-C7 [1.345(7)Å] and C4-C5 [1.359(8)Å] are significantly shorter than C3-C7 [1.408(7)Å] and C3-C4 [1.405(7)Å]. The C3-N1 bond length [1.335(6)Å] is intermediate between typical C-N single and double bond distances [1.465 and 1.239Å] [12] indicating a significant conjugation of exocyclic nitrogen.

P. Sakthivel and A. Pasupathy

The bond lengths and bond angles of the pyridinium ring are comparable with those reported for related structures [13]. The sum of the bond angles around N1 and N2 are equal to 360°. Hence there is no evidence for sp³ lone pair. The DMAP ring is essentially planar with an average deviation of 1.3°

The torsion angles of C9-C8-N2-C6 and C9-C8-N2-C5 are $89.8(5)^{\circ}$ and $-82.9(6)^{\circ}$ respectively which describe the orientation of the oxoethyl group with respect to the pyridinium moiety. The torsion angles of C15-O2-C16-C17 [-74.0(7)^{\circ}], C10-C15-O2-C16 [176.9(5)^{\circ}] and O2-C16-C17-C22.[-49.4(8)^{\circ}] confirm the orientation of the benzyloxy group. The orientation of the methyl phenyl ring with respect to oxoethyl group of pyrdinium ring is described by the torsion angles O1-C9-C10-C11 [-2.1(7)^{\circ}] and C8-C9-C10-C15 [-2.5(8)^{\circ}] respectively.

Table 1.4 lists the torsion angles of the title compound and **Table 1.4a** shows the dihedral angles between the planes. The dihedral angle between the planes of the pyridine moiety and the 5-methylphenyl group is $87.9(2)^\circ$. The pyridinium and dimethyl amino group are in co-planar orientation. The 5-methylphenyl ring and the phenyl ring of the benzyloxy group are orthogonal with the dihedral angle of $83.9(2)^\circ$. The packing of molecules viewed along 'b'-axis is shown in the **Fig. 1.3**.

Fig 1.4 The C-H...O and C-H...Br hydrogen bonding interactions form a chain along bc plane

Hydrogen Bonding

The hydrogen bonding scheme is listed in **Table 1.5** The bromide ion is surrounded by either phenyl or pyridinium rings from adjacent cations forming C-H...Br contacts. The C-H...O and C-H...Br hydrogen bonding interactions form a chain along **bc** plane [**Fig. 1.4**]. The crystal structure is stabilized by C6-H6...Brⁱ [symmetry code i = ${}^{3}/_{2}$ -x, ${}^{1}/_{2}$ +y, -z] and C19-H19...O1ⁱⁱ [symmetry code ii = ${}^{-1}/_{2}$ +x, ${}^{-1}/_{2}$ -y, ${}^{-1}$ +z] interactions and one weak intra-molecular interaction C11-H11...O1 involving atoms C11-H11...O1-C9-C10 which forms a ring of graph set motif S(5). In this compound, C1-H1C...Cg1ⁱⁱⁱ interaction is observed. The atom H1C is separated by a distance of 2.81Å from the centroid of the phenyl ring Cg1.[symmetry code (iii)=1-x, -y, -z; where Cg1=C17-C22]. Additionally C16-H16B...Cg2^{iv} interaction is also formed where Cg2 is 5-methyl benzene ring [Cg2=C10/C11/C12/C13/C14/C15, symmetry code (iv)= ${}^{-1}/_{2}$ +x, ${}^{-1}/_{2}$ -y, z]. Other interactions governing the packing of the molecule are generally considered to be weak.

Empirical formula	C ₂₃ H ₂₅ Br N ₂ O ₂
Formula weight	441.36
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2 ₁ /c
Unit cell dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	2015.9(4) A ³
Z, Calculated density	4, 1.454 Mg/m ³
Absorption coefficient	2.061 mm ⁻¹
F(000)	912
Crystal size	$0.28 \times 0.24 \times 0.16 \text{ mm}$
Theta range for data collection	1.94 to 24.38 deg.
Limiting indices	-10<=h<=10, -24<=k<=24, -11<=l<=11
Reflections collected / unique	18549 / 3292 [R(int) = 0.0504]
Completeness to theta $= 24.38$	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3292 / 1 / 265
Goodness-of-fit on F^2	1.115
Final R indices [I>2sigma(I)]	R1 = 0.0526, wR2 = 0.1396
R indices (all data)	R1 = 0.0862, wR2 = 0.1636
Extinction coefficient	0.0044(11)
Largest diff. peak and hole	0.31e.Å ⁻³ and -0.740 e.Å ⁻³

 TABLE 1.1 Crystal data and structure refinement for 1-[2-(2-Benzyloxyphenyl-5-methyl)-2-oxo-ethyl]-4-dimethylamino pyridinium bromide

TABLE 1.2 Bond lengths (Å) for non-H atoms of the title compound with esd's in parentheses

Atom	Distance
C1-N1	1.450(7)
C2-N1	1.458(7)
C3-N1	1.334(6)
C3-C4	1.405(7)
C3-C7	1.408(7)
C4-C5	1.359(8)
C5-N2	1.344(6)
C6-N2	1.343(6)
C6-C7	1.345(7)
C8-N2	1.463(6)
C8-C9	1.521(7)
C9-O1	1.203(6)
C9-C10	1.489(7)
C10-C11	1.375(7)
C10-C15	1.405(7)
C11-C12	1.369(9)
C12-C13	1.386(9)

P. Sakthivel and A. Pasupathy

C12-C23	1.510(7)
C13-C14	1.354(9)
C14-C15	1.388(8)
C15-O2	1.370(6)
C16-O2	1.435(7)
C16-C17	1.498(8)
C17-C18	1.364(8)
C17-C22	1.382(8)
C18-C19	1.359(8)
C19-C20	1.372(10)
C20-C21	1.351(11)
C21-C22	1.383(10)

TABLE 1.3 Bond angles (°) for non-H atoms of the title compound with esd's in parentheses

Atom	Angle
N1-C3-C4	122.3(5)
N1-C3-C7	122.0(5)
C4-C3-C7	115.7(5)
C5-C4-C3	120.7(5)
N2-C5-C4	121.8(5)
N2-C6-C7	122.5(5)
C6-C7-C3	120.6(5)
N2-C8-C9	110.0(4)
O1-C9-C10	119.5(5)
O1-C9-C8	118.2(5)
C10-C9-C8	122.3(5)
C11-C10-C15	117.2(5)
C11-C10-C9	117.7(5)
C15-C10-C9	125.1(5)
C12-C11-C10	122.6(6)
C11-C12-C13	119.2(6)
C11-C12-C23	130.3(7)
C13-C12-C23	109.8(6)
C14-C13-C12	120.1(6)
C13-C14-C15	120.6(6)
O2-C15-C14	123.6(5)
O2-C15-C10	116.1(5)
C14-C15-C10	120.3(5)
O2-C16-C17	113.2(5)
C18-C17-C22	117.9(6)
C18-C17-C16	120.7(5)
C22-C17-C16	121.4(6)
C19-C18-C17	122.4(6)
C18-C19-C20	119.1(7)
C21-C20-C19	120.1(7)
C20-C21-C22	120.4(7)
C17-C22-C21	120.0(6)
C3-N1-C1	121.4(5)
C3-N1-C2	121.8(4)
C1-N1-C2	116.4(5)
C6-N2-C5	118.6(5)
C6-N2-C8	120.7(4)
C5-N2-C8	120.3(4)
C15-O2-C16	118.8(4)

Atom	Angle	Atom	Angle
N1-C3-C4-C5	178.6(5)	C9-C10-C15-C14	-178.4(5)
C7-C3-C4-C5	-0.4(7)	O2-C16-C17-C18	132.7(6)
C3-C4-C5-N2	-0.2(8)	O2-C16-C17-C22	-49.4(8)
N2-C6-C7-C3	0.5(8)	C22-C17-C18-C19	1.3(8)
N1-C3-C7-C6	-178.7(5)	C16-C17-C18-C19	179.2(5)
C4-C3-C7-C6	0.3(7)	C17-C18-C19-C20	-1.7(9)
N2-C8-C9-O1	1.3(7)	C18-C19-C20-C21	1.2(10)
N2-C8-C9-C10	-179.1(4)	C19-C20-C21-C22	-0.4(10)
O1-C9-C10-C11	-2.1(7)	C18-C17-C22-C21	-0.5(8)
C8-C9-C10-C11	178.4(5)	C16-C17-C22-C21	-178.4(6)
O1-C9-C10-C15	177.0(5)	C20-C21-C22-C17	0.0(10)
C8-C9-C10-C15	-2.5(8)	C4-C3-N1-C1	-0.6(7)
C15-C10-C11-C12	-0.3(8)	C7-C3-N1-C1	178.3(5)
C9-C10-C11-C12	178.9(5)	C4-C3-N1-C2	-174.1(5)
C10-C11-C12-C13	-0.4(9)	C7-C3-N1-C2	4.8(7)
C10-C11-C12-C23	168.5(5)	C7-C6-N2-C5	-1.2(8)
C11-C12-C13-C14	0.6(9)	C7-C6-N2-C8	-174.0(5)
C23-C12-C13-C14	-170.4(5)	C4-C5-N2-C6	1.0(8)
C12-C13-C14-C15	-0.2(9)	C4-C5-N2-C8	173.9(5)
C13-C14-C15-O2	-179.9(5)	C9-C8-N2-C6	89.8(5)
C13-C14-C15-C10	-0.5(8)	C9-C8-N2-C5	-82.9(6)
C11-C10-C15-O2	-179.9(4)	C14-C15-O2-C16	-3.7(8)
C9-C10-C15-O2	1.1(7)	C10-C15-O2-C16	176.9(5)
C11-C10-C15-C14	0.7(7)	C17-C16-O2-C15	-74.0(7)

TABLE 1.4 Torsion angles (°) for non-hydrogen atoms of title with esd's in parentheses

TABLE 1.4a Dihedral angles (°) formed by LSQ-planes with e.s.d's in parentheses

Plane	Plane	Angle (s.u.)	Angle (s.u.)
1	2	87.90(0.17)	92.10(0.17)
1	3	5.43(0.18)	174.57(0.18)
2	3	83.87(0.18)	96.13(0.18)

TABLE 1.5 Hydrogen bonding geometry (Å, °) (D-donor; A-acceptor; H-hydrogen) for title compound

Interactions	D-H	HA	DA	D-HA
Intramolecular				
C11-H11O1	0.9300	2.4000	2.727(8)	100.00
Intermolecular				
C6-H6 Br ⁱ	0.9300	2.8700	3.581(7)	134.00
C19-H19O1 ⁱⁱ	0.9300	2.5200	3.406(7)	159.00
C1-H1CCg1 ⁱⁱⁱ	0.9300	2.81	3.684(7)	152
C16-H16BCg2 ^{iv}	0.9300	2.95	3.734(6)	139

Symmetry Code: (i) = ${}^{3}/{}_{2}$ -x, ${}^{1}/{}_{2}$ + y,-z; (ii) = ${}^{-1}/{}_{2}$ + x, ${}^{-1}/{}_{2}$ -y, -1+z; (iii) = 1 -x, -y, -z; (iv) = ${}^{-1}/{}_{2}$ + x, ${}^{1}/{}_{2}$ -y, z.

Acknowledgement

The authors thank Prof.M. Nallu, Rtrd.professor, Department of Chemistry, Bharathidasan university, Tiruchirappalli for his support throughout this work.

REFERENCES

[1] Akkurt, M., Karaca, S., Kucukbay, H., Yilmaz, U. and Buyukgungor, O. *Acta Cryst.* (2005). E61, 02875-02877.
 [2] Grissmer, S., Lewis, R. S. and Cahalan, M. D. (1992). *J. Gen. Physiol.* 99, 63-84.

[3] Lajdova, I., Chorvat, D. Jr, Spustova, V. and Chorvatova, A. (2004). Can. J. Physiol. Pharmacol. 82, 50-56.

[4] Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. and Lough, A. J. (2005). Acta Cryst. E61, 01350-01353.

[5] Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0) and Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

[6] Sheldrick, G. M. (1996). SADABS. University of Go" ttingen, Germany.

[7] Altomore, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. and Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.

[8] Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Go" ttingen, Germany, 1997.

[10] Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547-1554.

- [11] Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
- [12] Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

[13] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

^[9] Wilson, A. J. C. (1976). Acta Cryst., A32, 994.