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ABSTRACT

The decomposition of the elastic constant tenstr its irreducible parts is given. The norm conceptelastic
constant tensor and its irreducible parts and theitios are used to study the anisotropy of copparickel at
different % of Ni, and the relationship of theirwsttural properties and other properties with theinisotropy are
given.
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INTRODUCTION

ELASTIC CONSTANT TENSOR DECOMPOSITION
The constitutive relation characterizing linearsatiopic solids is the generalized Hook'’s law [1]:

O =Cjéu. & = ST 1)
Where Uij and &, are the symmetric second rank stress and straﬂmﬂsnrespectivel@ijkl is the fourth-rank
elastic stiffness tensor (here after we call isétaconstant tensor) anfﬁjm is the elastic compliance tensor.
There are three index symmetry restrictions ongltessors. These conditions are:

Cix =Cii+ Ciw = Cii» Cijw = Cq 2)(

Which the first equality comes from the symmetrystriess tensor, the second one from the symmetstrain
tensor, and the third one is due to the presen@eddformation potential. In general, a fourth-ramfksor has 81
elements. The index symmetry conditions (2) redtiie number to 21. Consequently, for most asymmetri
materials (triclinic symmetry) the elastic constimsor has 21 independent components.

Elastic compliance tensoSU-k, possesses the same symmetry properties as thie elasstant tensoCijk| and
their connection is given by [2,3,4,5,6,7]:

1
Ciii Skamn= 5 (5|m Ojn + 0,0, ) ®3)
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Where 5ij is the Kronecker delta. The Einstein summationveation over repeated indices is used and indiges r

from 1 to 3 unless otherwise stated.

By applying the symmetry conditions (2) to the depasition results obtained for a general fourthkremsor, the
following reduction spectrum for the elastic comsteensor is obtained. It contains two scalars, tiewiators, and
one-nonor parts:

Ci = Cu(kl Y 4 Cu(kl 2 + Cu(kl Y+ Cu(kl 2+ C.Em ! &
Where:
C|Ekl ) = - 5 a_kICppqq' (5)
: 1
Cij(gl’z) = 90 (35ik5 | 30,0 — 299y ) (3C papq Cppqq) (6)
2
lekl ) = (Jlkcjplp +03 Ciip +91C oo + 95 Cipkp) BT (O_uk Oj *+ 00 )Cpqpq (7)
2;2) 1 1
i = 29 (5Cipp ~ 4Cigip) + 2% (5Ci,-pp - 4Cip,-p)
2 2
- E a-ik (5lepp - 4ij|p ) - 35 5 (5C|kpp 4C|pkp)
2 2
- %5” (5Cjkpp 4C|plp) 35 ij (5Cilpp 4Clplp) 10E (25jk5 + 2O-ka- 5é-ij 5k| )
(SC ppqq -4C pqpq) (8)

1
Cljk| (Cukl +Cyy *+Cij ) — _[JI (Cklpp + 2Ckp|p)+ Oi (lepp + 2ij|p)

+9, ( ikop T 2ijkp)+ 5jk (Cilpp + 2C|plp) +0; (Cikpp + 2C|pkp)

+9,(Cip +2C

Ijpp ipip ) OE [(JIJ 5 JKJ JI ij )(C ppqq +2C pqpq)] ©)

These parts are orthonormal to each other. Usirigt\¥motation [1] forCijk, , can be expressed in 6 by 6 reduced

matrix notation, where the matrix coeﬁicientsm are connected with the tensor componeﬁfﬁkl by the

recalculation rules:
Clu/] :Cljk|’ (lJ “— /,1:1, ..... 6,k| > /] =:L ..... 6)
That is:

11122 233 3,23=32 - 431=13 - 512=21- 6.
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II. THE NORM CONCEPT
Generalizing the concept of the modulus of a veatorm of a Cartesian tensor (or the modulus oéresdr) is
defined as the square root of the contracted ptazhter all indices with itself:

N = HTH = {Tijkl .......... Tkt }1/2

Denoting rank-n Cartesiéﬁ“d , by T, the square of the norm is expressed as [7]:

2 _l2 — (i:)||? — _ (o) (i.9)
N2 =[T[* =T =3 T Ty = ST
i.q (n) (n).i.a
This definition is consistent with the reduction thfe tensor in tensor in Cartesian formulation wiadinthe

irreducible parts are embedded in the original rariensor space. Since the norm of a Cartesiaroitéasan
invariant quantity, we suggest the following:

Rulel.The norm of a Cartesian tensor may be used aigesi@n for representing and comparing the ovezéct
of a certain property of the same or different syetijn The larger the norm value, the more effecthe property
is. It is known that the anisotropy of the matesjale., the symmetry group of the material andathisotropy of the
measured property depicted in the same materiajsh@mauite different. Obviously, the property, ensust show,
at least, the symmetry of the material. For examalg@roperty, which is measured in a material, @bnost be

isotropic but the material symmetry group itselfyn@ve very few symmetry elements. We know thatjgotropic
materials, the elastic compliance tensor has tweglircible parts, i.e., two scalar parts, so themof the elastic

compliance tensor for isotropic materials depenuy on the norm of the scalar parts, .= NS, Hence, the

ratio —> =1 for isotropic materials. For anisotropic materjd® elastic constant tensor additionally contaivis
| N o n

deviator parts and one nonor part, so we can deﬁﬁ% for the deviator irreducible parts are— for nonor

parts. Generalizing this to irreducible tensorstapank four, we can define the following norm oati—> for

scalar parts,—V for vector parts,—oI for deviator parts,i for septor parts, and—" for nonor parts. Norm

ratios of different irreducible parts representainésotropy of that particular irreducible partyttean also be used to
assess the anisotropy degree of a material propsrywhole, we suggest the following two moresule

Rule 2.When NS is dominating among norms of irreducible partg thoser the norm ratie—> is to one, the

closer the material property is isotropic.
Rule3.When NS is not dominating or not present, norms of theeoilreducible parts can be used as a criterion.
But in this case the situation is reverse; thedathe norm ratio value we have, the more anisatrthg material

property is.

The square of the norm of the elastic stiffnessdekelastic constant tens&?}mn is:

INF =lef + (et 23 et e Tlef + el

+2y () cl)+ ¥ (el w0)
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Let us consider the irreducible decompositionshefdlastic stiffness tensor (elastic constant t@nisahe following
crystals:

Table 1, Elastic Constants (GPa), [8]

Element, Cubic Systen| Cll C_I.Z C44

Copper, Cu 169 122 75.93
Nickel, Ni, Zero field. 247 153 122
Saturation field. 249 152 124

Table 2, Elastic Constants (GPa) [8]

Alloy, Cubic System Copper Nickel,
N YN Ciy | Co| Cus
0 168.1| 1214 75.1
2.34 169.3] 121.9 76.3]
3.02 169.4| 1214 76.7
4.49 170.1) 121.9 77.3
6.04 171.1] 122.4 78.1f
9.73 172.3| 1224 79.1
0 (Non magnetic) 168. 121p 75
31.1 (Non magnetic) 189.1 1319 89
53.8 (Non magnetic) 208.6 1428 100.9
65.5 (Unmagnetized) 216.8 146|3 104.1
77.2 (Magnetized) 227. 15009 112|5
82.2 (Magnetized) 232.7 1513 115(9
92.7 (Magnetized) 2447 153J9 121|7
100 (Magnetized) 252. 1550 1250

By using tablel and table 2, and the decompostidhe elastic constant tensor, we have calculitedhorms and
the norm ratios as is shown in table 3 and in tdble

Table 3, the norms and norm ratios

Element Ns Nd Nn N NS Nd Nn
N N N
Copper, Cu 450.924 0 94.95)l 460.8(18 0.9785 ( 0.2061
Nickel, Ni, Zero field. | 631.595 0 137.477] 646.385( 0.9771 0 0.2127
Saturation field. 634.501 0 138.394| 649.419| 0.9770 0 0.2131
Table 4, the norms and norm ratios
Alloy, Cubic System Copper Nicke], N N N N NS Nd Nn
Cu-Ni, At % Ni s d n N N N
0 448.767 0 94.859] 458.683 0.9784 0 0.2068
2.34 451.775 0 96.324 461.930 0.9780 0 0.2085
3.02 451.595| 0 96.601 461.812 0.97)9 0 0.2092
4.49 453.689 0 97.517 464.091 0.97)7 0 0.2101
6.04 456.302] 0 98.525 466.818 0.97)5 0 0.2111
9.73 458.856 0 99.442 469.5Q7 0.97)3 0 0.2118
0 (Non magnetic) 449.178 0 95.59p 459.232 0.9781 0.2082
31.1 (Non magnetic) 501.96p 0 111.998 514.305 @976 O 0.2178
53.8 (Non magnetic) 551.34p 0 124.646 565.260 @95 O 0.2205
65.5 (Unmagnetized) 570.965 0 129.8f0 585549 0.975 O 0.2218
77.2 (Magnetized) 595.738 0 136.469 611.164 0.9y47 0 0.2233
82.2 (Magnetized) 606.269 0 137.844 621.442 0.9y51 0 0.2217
92.7 (Magnetized) 629.848 0 139.860 645.189 0.9y62 0 0.2168
100 (Magnetized) 644.426 0 139.585 659.370 0.9y73 D 0.2117
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CONCLUSION

We can conclude from table 3, by considering thi® nl:l\li that Copper, (first ionization energy is 745KJ/e)dk
N

more isotropic than Nickel, (first ionization engrig737KJ/mole), and by considering the value Nfwhich is
more high in the case of Nickel, so can say thakélielastically is more stronger than Copper, Bickel with
saturation field is more anisotropic and elasticeImore stronger than Nickel with zero field..

And we can conclude from table 4 by considering natio& that in the Alloy Cu-Ni as the percentage of Ni

increases the anisotropy of the alloy increased, an considering the value oN which is increasing as the
percentage of Ni increases, so can say that tbg ladlcomes elastically more strongest.
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