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ABSTRACT 
 
The decomposition of the elastic constant tensor into its irreducible parts is given. The norm concept of elastic 
constant tensor and its irreducible parts and their ratios are used to study the anisotropy of copper – nickel at 
different % of Ni, and the relationship of their structural properties and other properties with their anisotropy are 
given. 
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INTRODUCTION 
 
ELASTIC CONSTANT TENSOR DECOMPOSITION 
The constitutive relation characterizing linear anisotropic solids is the generalized Hook’s law [1]: 
 

klijklij C εσ = , klijklij S σε =                                                                                               (1) 

 

Where ijσ  and klε are the symmetric second rank stress and strain tensors, respectively ijklC is the fourth-rank 

elastic stiffness tensor (here after we call it elastic constant tensor) and ijklS  is the elastic compliance tensor. 

 
There are three index symmetry restrictions on these tensors. These conditions are: 
 

jiklijkl CC = , ijlkijkl CC = , klijijkl CC =                                                                                                      (2) 

 
Which the first equality comes from the symmetry of stress tensor, the second one from the symmetry of strain 
tensor, and the third one is due to the presence of a deformation potential. In general, a fourth-rank tensor has 81 
elements. The index symmetry conditions (2) reduce this number to 21. Consequently, for most asymmetric 
materials (triclinic symmetry) the elastic constant tensor has 21 independent components.  
 

Elastic compliance tensor ijklS  possesses the same symmetry properties as the elastic constant tensor ijklC  and 

their connection is given by [2,3,4,5,6,7]: 
 

klmnijkl SC = ( )jminjnim δδδδ +
2

1
                                                                                                                   (3) 
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Where ijδ  is the Kronecker delta. The Einstein summation convention over repeated indices is used and indices run 

from 1 to 3 unless otherwise stated.  
 
By applying the symmetry conditions (2) to the decomposition results obtained for a general fourth-rank tensor, the 
following reduction spectrum for the elastic constant tensor is obtained. It contains two scalars, two deviators, and 
one-nonor parts: 
 

( ) ( ) ( )1;22;01;0
ijklijklijklijkl CCCC ++=   

( ) ( )1;42;2
ijklijkl CC ++                                                                                    (4)      

                
Where: 
 

( )
ppqqklijijkl CC δδ

9

11;0 = ,                                                                                                                (5) 

 

( ) ( )klijjkiljlikijklC δδδδδδ 233
90

12;0 −+=  ( )ppqqpqpq CC −3                                                           (6) 

 

( ) ( )ipkpjljpkpiliplpjkjplpikijkl CCCCC δδδδ +++=
5

11;2 ( ) pqpqjkiljlik Cδδδδ +−
15

2
           (7) 

 

( ) ( ) ( )ipjpijppklkplpklppijijkl CCCCC 45
7

1
45

7

12;2 −+−= δδ  

( ) ( )ipkpikppjljplpjlppik CCCC 45
35

2
45

35

2 −−−− δδ  

( ) ( )iplpilppjkiplpjkppil CCCC 45
35

2
45

35

2 −−−− δδ ( )klijjlikiljk δδδδδδ 522
105

2 −++  

( )pqpqppqq CC 45 −                                                                                                                                               (8) 

( ) )(
3

11;4
iljkikjlijklijkl CCCC ++= ( ) ( )[ jplpjlppikkplpklppij CCCC 22

21

1 +++− δδ  

( ) ( )iplpilppjkjpkpjkppil CCCC 22 ++++ δδ  ( )ipkpikppjl CC 2++ δ  

( )ipjpijppkl CC 2++ δ ]
  

( )( )[ ]pqpqppqqjkiljlikklij CC 2
105

1 ++++ δδδδδδ
                             

(9) 

 

These parts are orthonormal to each other. Using Voigt’s notation [1] for ijklC , can be expressed in 6 by 6 reduced 

matrix notation, where the matrix coefficients µλc are connected with the tensor components ijklC  by the 

recalculation rules: 
 

ijklCc =µλ ;      )6,....,1,6,....,1( =↔=↔ λµ klij  
 
That is: 
 

111↔ , 222↔ , 333↔ , 43223 ↔= 51331 ↔= , 62112 ↔= . 
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II. THE NORM CONCEPT 
Generalizing the concept of the modulus of a vector, norm of a Cartesian tensor (or the modulus of a tensor) is 
defined as the square root of the contracted product over all indices with itself: 
 

{ } 2/1
..................... ijklijkl TTTN ==

 
 

Denoting rank-n Cartesian ..........ijklT , by nT , the square of the norm is expressed as [7]: 

 

( )
( ) ( ) ( )

( )
( )
( )

( )( )
∑ ∑∑ ====
n qjn

qj
n

qj
nnn

qj

qj TTTTTTN
,,

,;2

,

;22

 
 
This definition is consistent with the reduction of the tensor in tensor in Cartesian formulation when all the 
irreducible parts are embedded in the original rank-n tensor space. Since the norm of a Cartesian tensor is an 
invariant quantity, we suggest the following: 
 
Rule1. The norm of a Cartesian tensor may be used as a criterion for representing and comparing the overall effect 
of a certain property of the same or different symmetry. The larger the norm value, the more effective the property 
is. It is known that the anisotropy of the materials, i.e., the symmetry group of the material and the anisotropy of the 
measured property depicted in the same materials may be quite different. Obviously, the property, tensor must show, 
at least, the symmetry of the material. For example, a property, which is measured in a material, can almost be 
isotropic but the material symmetry group itself may have very few symmetry elements. We know that, for isotropic 
materials, the elastic compliance tensor has two irreducible parts, i.e., two scalar parts, so the norm of the elastic 

compliance tensor for isotropic materials depends only on the norm of the scalar parts, i.e. sNN = , Hence, the 

ratio 1=
N

Ns  for isotropic materials. For anisotropic materials, the elastic constant tensor additionally contains two 

deviator parts and one nonor part, so we can define 
N

Nd  for the deviator irreducible parts and 
N

Nn  for nonor 

parts. Generalizing this to irreducible tensors up to rank four, we can define the following norm ratios: 
N

Ns  for 

scalar parts, 
N

Nv for vector parts, 
N

Nd  for deviator parts, 
N

Nsc  for septor parts, and 
N

Nn  for nonor parts. Norm 

ratios of different irreducible parts represent the anisotropy of that particular irreducible part they can also be used to 
assess the anisotropy degree of a material property as a whole, we suggest the following two more rules: 
 

Rule 2. When sN  is dominating among norms of irreducible parts: the closer the norm ratio 
N

Ns  is to one, the 

closer the material property is isotropic. 
 

Rule3. When sN  is not dominating or not present, norms of the other irreducible parts can be used as a criterion. 

But in this case the situation is reverse; the larger the norm ratio value we have, the more anisotropic the material 
property is. 
 

The square of the norm of the elastic stiffness tensor (elastic constant tensor) mnC  is: 

( )( ) ( )( )∑ ∑+=
mn mn

mnmn CCN
22;021;02 ( ) ( )( ) ( )( ) ( )( )22;221;22;01;0 .2 ∑∑∑ +++ mn

mn
mn

mn
mnmn CCCC  

( ) ( )( ) ( )( )21;42;21;2 .2 ∑∑ ++
mn

mn
mn

mnmn CCC                                                                                                              (10) 
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Let us consider the irreducible decompositions of the elastic stiffness tensor (elastic constant tensor) in the following 
crystals: 

 
Table 1, Elastic Constants (GPa), [8] 

 

Element, Cubic System 
11c  12c  44c  

Copper, Cu 169 122 75.3 
Nickel, Ni, Zero field. 
Saturation field. 

247 
249 

153 
152 

122 
124 

 
Table 2, Elastic Constants (GPa) [8] 

 
Alloy, Cubic System Copper Nickel,  

Cu-Ni,At % Ni 11c  12c  44c  

0 168.1 121.4 75.1 
2.34 169.3 121.8 76.3 
3.02 169.4 121.8 76.7 
4.49 170.1 121.9 77.3 
6.04 171.1 122.4 78.1 
9.73 172.3 122.6 79.1 

0 (Non magnetic) 168.3 121.2 75.7 
31.1 (Non magnetic) 189.1 131.9 89.7 
53.8 (Non magnetic) 208.6 142.8 100.9 
65.5 (Unmagnetized) 216.8 146.3 106.1 

77.2 (Magnetized) 227.0 150.9 112.5 
82.2 (Magnetized) 232.7 151.3 115.9 
92.7 (Magnetized) 244.7 153.9 121.7 
100 (Magnetized) 252.8 155.1 125.0 

 
By using table1 and table 2, and the decomposition of the elastic constant tensor, we have calculated the norms and 
the norm ratios as is shown in table 3 and in table 4. 
 

Table 3, the norms and norm ratios 
 

Element sN  dN  nN  N  
N

Ns
 

N

Nd
 

N

Nn
 

Copper, Cu 450.929 0 94.951 460.818 0.9785 0 0.2061 
Nickel, Ni, Zero field. 
Saturation field. 

631.595 
634.501 

0 
0 

137.477 
138.394 

646.385 
649.419 

0.9771 
0.9770 

0 
0 

0.2127 
0.2131 

 
Table 4, the norms and norm ratios 

 

Alloy, Cubic System Copper Nickel, 
Cu-Ni, At % Ni sN  dN  nN  N  

N

Ns
 

N

Nd
 

N

Nn
 

0 448.767 0 94.859 458.683 0.9784 0 0.2068 
2.34 451.775 0 96.326 461.930 0.9780 0 0.2085 
3.02 451.595 0 96.601 461.812 0.9779 0 0.2092 
4.49 453.689 0 97.517 464.051 0.9777 0 0.2101 
6.04 456.302 0 98.525 466.818 0.9775 0 0.2111 
9.73 458.856 0 99.442 469.507 0.9773 0 0.2118 

0 (Non magnetic) 449.173 0 95.592 459.232 0.9781 0 0.2082 
31.1 (Non magnetic) 501.962 0 111.998 514.305 0.9760 0 0.2178 
53.8 (Non magnetic) 551.346 0 124.646 565.260 0.9754 0 0.2205 
65.5 (Unmagnetized) 570.965 0 129.870 585.549 0.9751 0 0.2218 

77.2 (Magnetized) 595.733 0 136.469 611.164 0.9747 0 0.2233 
82.2 (Magnetized) 606.269 0 137.844 621.742 0.9751 0 0.2217 
92.7 (Magnetized) 629.848 0 139.860 645.189 0.9762 0 0.2168 
100 (Magnetized) 644.426 0 139.585 659.370 0.9773 0 0.2117 
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CONCLUSION 
 

We can conclude from table 3, by considering the ratio 
N

Ns  that Copper, (first ionization energy is 745KJ/mole) is 

more isotropic than Nickel, (first ionization energy is737KJ/mole), and by considering the value of N which is 
more high in the case of Nickel, so can say that Nickel elastically is more stronger than Copper, and Nickel with 
saturation field is more anisotropic and elastically is more stronger than Nickel with zero field.. 
 

And we can conclude  from table 4 by considering the ratio 
N

Ns  that in the Alloy Cu-Ni as the percentage of Ni 

increases the anisotropy of the alloy increases, and by considering the value of N which is increasing as the 
percentage of Ni increases, so can say that the alloy becomes elastically more strongest.  
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