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ABSTRACT 
 
The norm of elastic constant tensor and the norms of the irreducible parts of the elastic constants of Alkali Halides 
are calculated. The relation of the scalar parts norm and the other parts norms and the anisotropy of these 
compounds are presented. The norm ratios are used to study anisotropy of these compounds.    
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INTRODUCTION 
 

The decomposition procedure and the decomposition of elastic constant tensor is given in [1,2,3] and in the 
appendix, also the definition of norm concept and the norm ratios and the relationship between the anisotropy and 
the norm ratios are given in [1,2,3] and in the appendix. As the ratio  becomes close to one the material 

becomes more isotropic, and as the ratio  becomes close to one the material becomes more anisotropic as 

explained in [1,2,3] and in the appendix. 
 
CALCULATIONS 
 

Table 1, Elastic Constants (GPa), [4] 
 

Cubic System 
11c  44c  12c  

LiF 112.0 63.5 46.0 
LiCl 49.1 24.8 22.0 
LiBr 39.4 19.1 18.9 
LiI 28.5 13.5 14.0 
NaF 97.0 28.1 24.2 
NaCl 49.1 12.8 12.8 
NaBr 40.0 9.96 10.6 
NaI 30.2 7.36 9.0 
KF 65.0 12.5 15.0 
KCl 40.5 6.27 6.9 
KBr 34.5 5.10 5.5 
KI 27.4 3.70 4.3 

RbF 55.2 9.25 14.0 
RbCl 36.4 4.7 6.3 
RbBr 31.5 3.82 4.8 
RbI 25.6 2.79 3.7 
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By using table 1 and the decomposition of the elastic constant tensor, we have calculated the norms and the norm 
ratios as is shown in table 2.

Table 2, the norms and norm ratios 
 

Cubic System sN  dN  nN  N  
N

N s
 

N

Nd
 

N

Nn
 

LiF 265.640 0 55.907 271.459 0.9786 0 0.2060 
LiCl 114.894 0 20.622 116.730 0.9843 0 0.1767 
LiBr 92.861 0 16.222 94.267 0.9851 0 0.1721 
LiI 67.255 0 11.456 68.224 0.9858 0 0.1679 
NaF 178.887 0 15.214 179.533 0.9964 0 0.0847 
NaCl 89.640 0 9.807 90.175 0.9941 0 0.1088 
NaBr 72.744 0 8.689 73.261 0.9929 0 0.1186 
NaI 56.102 0 5.939 56.415 0.9944 0 0.1053 
KF 111.327 0 22.913 113.661 0.9795 0 0.2016 
KCl 64.476 0 19.302 67.303 0.9580 0 0.2868 
KBr 54.164 0 17.23 56.839 0.9529 0 0.3031 
KI 42.552 0 14.389 44.919 0.9473 0 0.3203 

RbF 94.942 0 20.805 97.195 0.9768 0 0.2141 
RbCl 57.102 0 18.972 60.171 0.9490 0 0.3153 
RbBr 48.269 0 17.469 51.333 0.9403 0 0.3403 
RbI 38.6285 0 14.958 41.423 0.9325 0 0.3611 

 
CONCLUSION 

 

We can conclude from table 2, by considering the ratio 
N

N s  that the compounds of sodium have the highest ratios, 

so we can say that the compounds of sodium (NaF, NaI, NaCl, and NaBr) are the most isotropic compounds among 

these compounds and also we can notice that NaF is the most isotropic compound which has the highest ratio   
N

Ns  

and the lowest ratio 
N

Nn
, and we can notice that RbI  has the lowest ratio

N

N s  and the highest ratio 
N

Nn
, so we 

can say that RbI  is the most anisotropic compound among these compounds, and by considering the value of N we 
found that this value is the highest in the case of LiF  (271.459) so we can say that LiF  elastically is strongest, and 
this value is the lowest in the case of RbI  (41.423) so we can say that RbI  is elastically the least strong. 
 
APPENDIX 
ELASTIC CONSTANT TENSOR DECOMPOSITION 
The constitutive relation characterizing linear anisotropic solids is the generalized Hook’s law (Nye, 1964):   
 

klijklij C εσ = , klijklij S σε =                                                                                                   (1) 

 

Where ijσ  and klε are the symmetric second rank stress and strain tensors, respectively ijklC is the fourth-rank 

elastic stiffness tensor (here after we call it elastic constant tensor) and ijklS  is the elastic compliance tensor. 

 
There are three index symmetry restrictions on these tensors. These conditions are: 
 

jiklijkl CC = , ijlkijkl CC = , klijijkl CC =                                                                                                      (2) 

 
Which the first equality comes from the symmetry of stress tensor, the second one from the symmetry of strain 
tensor, and the third one is due to the presence of a deformation potential. In general, a fourth-rank tensor has 81 
elements. The index symmetry conditions (2) reduce this number to 21. Consequently, for most asymmetric 
materials (triclinic symmetry) the elastic constant tensor has 21 independent components.  
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Elastic compliance tensor ijklS  possesses the same symmetry properties as the elastic constant tensor ijklC  and 

their connection is given by [1,2,3,5,6,7,8]. 
 

klmnijkl SC = ( )jminjnim δδδδ +
2

1
                                                                                                                   (3) 

 

Where ijδ  is the Kronecker delta. The Einstein summation convention over repeated indices is used and indices run 

from 1 to 3 unless otherwise stated.  
 
By applying the symmetry conditions (2) to the decomposition results obtained for a general fourth-rank tensor, the 
following reduction spectrum for the elastic constant tensor is obtained. It contains two scalars, two deviators, and 
one-nonor parts: 
 

( ) ( ) ( )1;22;01;0
ijklijklijklijkl CCCC ++=  

( ) ( )1;42;2
ijklijkl CC ++                                                                                     (4)      

 
Where: 
 

( )
ppqqklijijkl CC δδ

9

11;0 = ,                                                                                                                (5) 

 

( ) ( )klijjkiljlikijklC δδδδδδ 233
90

12;0 −+=  ( )ppqqpqpq CC −3                                                           (6) 

( ) ( )ipkpjljpkpiliplpjkjplpikijkl CCCCC δδδδ +++=
5

11;2
                  

( ) pqpqjkiljlik Cδδδδ +−
15

2
                                                                                                                           (7) 

 

( ) ( ) ( )ipjpijppklkplpklppijijkl CCCCC 45
7

1
45

7

12;2 −+−= δδ   

( ) ( )ipkpikppjljplpjlppik CCCC 45
35

2
45

35

2 −−−− δδ    

( ) ( )iplpilppjkiplpjkppil CCCC 45
35

2
45

35

2 −−−− δδ  

 ( )klijjlikiljk δδδδδδ 522
105

2 −++ ( )pqpqppqq CC 45 −                                                                   (8) 

( ) )(
3

11;4
iljkikjlijklijkl CCCC ++=  

( ) ( )[ jplpjlppikkplpklppij CCCC 22
21

1 +++− δδ  

( ) ( )iplpilppjkjpkpjkppil CCCC 22 ++++ δδ  ( )ipkpikppjl CC 2++ δ  

( )+++ ipjpijppkl CC 2δ ] 
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( )( )[ ]pqpqppqqjkiljlikklij CC 2
105

1 +++ δδδδδδ                                                                                  (9) 

 

These parts are orthonormal to each other. Using Voigt’s notation [5] for ijklC , can be expressed in 6 by 6 reduced 

matrix notation, where the matrix coefficients µλc are connected with the tensor components ijklC  by the 

recalculation rules: 
 

ijklCc =µλ ;      )6,....,1,6,....,1( =↔=↔ λµ klij  

 

That is: 111↔ , 222↔ , 333↔ , 43223 ↔= 51331 ↔= , 62112 ↔= . 
 
THE NORM CONCEPT 
Generalizing the concept of the modulus of a vector, norm of a Cartesian tensor (or the modulus of a tensor) is 
defined as the square root of the contracted product over all indices with itself:       
 

{ } 2/1
..................... ijklijkl TTTN ==  

 

Denoting rank-n Cartesian ..........ijklT , by nT , the square of the norm is expressed as [7].  

 

( )
( ) ( ) ( )

( )
( )
( )

( )( )
∑ ∑∑ ====

n qjn

qj
n

qj
nnn

qj

qj TTTTTTN
,,

,;2

,

;22  

 
This definition is consistent with the reduction of the tensor in tensor in Cartesian formulation when all the 
irreducible parts are embedded in the original rank-n tensor space. 
 
Since the norm of a Cartesian tensor is an invariant quantity, we suggest the following: 
 
Rule1. The norm of a Cartesian tensor may be used as a criterion for representing and comparing the overall effect 
of a certain property of the same or different symmetry. The larger the norm value, the more effective the property 
is. It is known that the anisotropy of the materials, i.e., the symmetry group of the material and the anisotropy of the 
measured property depicted in the same materials may be quite different. Obviously, the property, tensor must show, 
at least, the symmetry of the material. For example, a property, which is measured in a material, can almost be 
isotropic but the material symmetry group itself may have very few symmetry elements. We know that, for isotropic 
materials, the elastic compliance tensor has two irreducible parts, i.e., two scalar parts, so the norm of the elastic 

compliance tensor for isotropic materials depends only on the norm of the scalar parts, i.e. sNN = , Hence, the 

ratio 1=
N

N s  for isotropic materials. For anisotropic materials, the elastic constant tensor additionally contains 

two deviator parts and one nonor part, so we can define 
N

Nd  for the deviator irreducible parts and 
N

Nn  for nonor 

parts. Generalizing this to irreducible tensors up to rank four, we can define the following norm ratios: 
N

N s  for 

scalar parts, 
N

Nv for vector parts, 
N

Nd  for deviator parts, 
N

N sc  for septor parts, and 
N

Nn  for nonor parts. Norm 

ratios of different irreducible parts represent the anisotropy of that particular irreducible part they can also be used to 
assess the anisotropy degree of a material property as a whole, we suggest the following two more rules: 
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Rule 2. When sN  is dominating among norms of irreducible parts: the closer the norm ratio 
N

N s  is to one, the 

closer the material property is isotropic. 
 

Rule3. When sN  is not dominating or not present, norms of the other irreducible parts can be used as a criterion. 

But in this case the situation is reverse; the larger the norm ratio value we have, the more anisotropic the material 
property is. 
 

The square of the norm of the elastic stiffness tensor (elastic constant tensor) mnC is: 

 

( )( ) ( )( )∑ ∑+=
mn mn

mnmn CCN
22;021;02 ( ) ( )( ) ( )( ) ( )( )22;221;22;01;0 .2 ∑∑∑ +++ mn

mn
mn

mn
mnmn CCCC  

( ) ( )( ) ( )( )21;42;21;2 .2 ∑∑ ++
mn

mn
mn

mnmn CCC                                                                                                              (10) 
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