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ABSTRACT

The norm of elastic constant tensor and the norms of the irreducible parts of the elastic constants of Alkali Halides
are calculated. The relation of the scalar parts norm and the other parts norms and the anisotropy of these
compounds are presented. The normratios are used to study anisotropy of these compounds.
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INTRODUCTION
The decomposition procedure and the decompositforlastic constant tensor is given in [1,2,3] andthe
appendix, also the definition of norm concept amel morm ratios and the relationship between theoamipy and
the norm ratios are given in [1,2,3] and in the eaqpix. As the rati¢i,/M becomes close to one the material
becomes more isotropic, and as the rafig/N becomes close to one the material becomes moseteopic as
explained in [1,2,3] and in the appendix.
CALCULATIONS

Table 1, Elastic Constants (GPa), [4]

Cubic System (_‘11 C44 Cl2
LiF 112.0 63.5 46.0
LiCl 49.1 24.8 22.0
LiBr 39.4 19.1 18.9
Lil 28.5 13.5 14.0
NaF 97.0 28.1 24.2
NaCl 49.1 12.8 12.8
NaBr 40.0 9.96 10.6
Nal 30.2 7.36 9.0
KF 65.0 12.5 15.0
KCI 40.5 6.27 6.9
KBr 34.5 5.10 55

Kl 27.4 3.70 4.3
RbF 55.2 9.25 14.0
RbCI 36.4 4.7 6.3
RbBr 315 3.82 4.8
Rbl 25.6 2.79 3.7
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By using table 1 and the decomposition of the El@sinstant tensor, we have calculated the normglanorm

ratios as is shown in table 2.
Table 2, the norms and norm ratios

Ne | N N
Cubic System N s N d N n N Ns Nd Nn
LiF 265.640 0 55.907 271.459 0.9786 0 0.2060
LiCl 114.894 0 20.624 116.73D 0.9843 0 0.1767
LiBr 92.861 0 16.222 94.2671  0.9851 0 0.17p1
Lil 67.255 0 11.45q 68.224 0.9858 0 0.1679
NaF 178.887 0 15.214 179.533  0.9964 0 0.0947
NaCl 89.640 0 9.807 90.17§  0.9941 0 0.10B8
NaBr 72.744 0 8.689| 73.26] 0.9949 0 0.11B6
Nal 56.102 0 5.939 56.413  0.9944 0 0.10p3
KF 111.327 0 22,913 113.66[L 0.9795 0 0.2016
KCI 64.476 0 19.304 67.309 0.9580 0 0.2868
KBr 54.164 0 17.23| 56.839 0.9529 0 0.30B1
Kl 42.552 0 14.389 44.919 0.94713 0 0.3203
RbF 94.942 0 20.80§ 97.195 0.9768 0 0.2141
RbClI 57.102 0 18.973 60.171 0.9490 0 0.3153
RbBr 48.269 0 17.469 51.333 0.9403 0 0.3403
Rbl 38.6285 0 14954 41.423 0.9325 0 0.3611
CONCLUSION

We can conclude from table 2, by considering thi® I’EII\LS that the compounds of sodium have the highesigati

SO we can say that the compounds of sodiNaf( Nal, NaCl, andNaBr) are the most isotropic compounds among

N

these compounds and also we can notice that Néie isiost isotropic compound which has the highegsh r —~s

N N

. Vn . . . . Vn
and the lowest ratioc——, and we can notice th&bl has the lowest ratlgl;s and the highest ratlw, SO we

can say thaRbl is the most anisotropic compound among these cangsy and by considering the value Nf we
found that this value is the highest in the caskilbf(271.459) so we can say tHaF elastically is strongest, and
this value is the lowest in the caseRifl (41.423) so we can say tHbl is elastically the least strong.
APPENDIX

ELASTIC CONSTANT TENSOR DECOMPOSITION
The constitutive relation characterizing linearsatiopic solids is the generalized Hook’s law (Ni/@64):

O =Ciuéu. & = Sy @)

Where O i and £ are the symmetric second rank stress and straﬁmr&nrespective@im is the fourth-rank

elastic stiffness tensor (here after we call isetaconstant tensor) anﬂ’ijkl is the elastic compliance tensor.

There are three index symmetry restrictions ongltessors. These conditions are:
Cik =Ciin- Ciw = Ciji» Cijw = C 2)(

Which the first equality comes from the symmetrystifess tensor, the second one from the symmetstrain
tensor, and the third one is due to the presen@eddformation potential. In general, a fourth-rémhksor has 81
elements. The index symmetry conditions (2) redtlie number to 21. Consequently, for most asymmetri
materials (triclinic symmetry) the elastic consttsor has 21 independent components.
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Elastic compliance tensoﬁjm possesses the same symmetry properties as thie elasstant tensoCijkl and
their connection is given by [1,2,3,5,6,7,8].

CijkISkImn (5 5 +5|n51m) (3)

Where 5”- is the Kronecker delta. The Einstein summatiorveotion over repeated indices is used and indices r
from 1 to 3 unless otherwise stated.
By applying the symmetry conditions (2) to the depasition results obtained for a general fourthkreamsor, the

following reduction spectrum for the elastic comstiensor is obtained. It contains two scalars, dewiators, and
one-nonor parts:

Cyo =CiY +CH? + i +Cff?) + i @
Where:
clod = 5 3 C ooaq ©)
Ciggl;Z) = %(35”@- +30,0j ~ 20,0y ) (3C o =~ Copaa) )
C.Em ) = (Jlkcjplp + 5J|<C|p|p + é-IICkap a-Icuokp)
_1_5(5ik51| * 0110 JC papg "
Ci = %5” (5Cupp ~4Cigp)+ % 9y (5Ciipp - 4Cipjp)

325 3y (BC 1pp =4C 15,) - 3255 (5Cupp ~4Cipp)

325 Ji (5Cjkpp 4C|p|p) 325 5jk(5Cnpp _4Cip|p)

10“ (251k5|| +26,.0; —50,9y )(5Cppqq - 4Cpqpq) ®

C|§kl - (Cljk| +Clk]| +C|I]k)

jtpp + 2CJD'D)
+2C5) + 3 (Cip + 2Cipig )

[Jij (Cklpp + 2Ckplp)+ Ok (C
+0, (Ciigp + 2C i)+ 34 (C
Ja

ilpp
Ciipp + 2C'DJP)
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1

10t [(5” O ¥ OOy + 00 )(Cppqq *+2C pgpq )] )

These parts are orthonormal to each other. Usirigt¥motation [5] forCijk| , can be expressed in 6 by 6 reduced

matrix notation, where the matrix coeﬁicien@m are connected with the tensor componeﬁfﬁm by the

recalculation rules:

C/M =C|]k|’ (IJ > /le, ..... 6,k| > Azl, ..... 6)

Thatis:11 o 1,22 2,33 & 3,23=32 » 431=13 - 512=21 - 6.

THE NORM CONCEPT
Generalizing the concept of the modulus of a veatorm of a Cartesian tensor (or the modulus ofresdr) is
defined as the square root of the contracted ptazleer all indices with itself:

N =HTH ={Tijkl Tkt }1/2

.......... ij

Denoting rank-n Cartesia-\ﬁjkl , byT , the square of the norm is expressed as [7].

. 2 . .
N =[T[* :J_Z;,T("q) =2 T = (%QT((J)’Q)T(J)'Q)

This definition is consistent with the reduction thie tensor in tensor in Cartesian formulation wiadinthe
irreducible parts are embedded in the original fiam&nsor space.

Since the norm of a Cartesian tensor is an invagaantity, we suggest the following:

Rulel. The norm of a Cartesian tensor may be used aisesi@n for representing and comparing the oveséict
of a certain property of the same or different syimn The larger the norm value, the more effectihwe property
is. It is known that the anisotropy of the matesjiale., the symmetry group of the material andahisotropy of the
measured property depicted in the same materiajshmauite different. Obviously, the property, tensust show,
at least, the symmetry of the material. For examal@roperty, which is measured in a material, abnost be
isotropic but the material symmetry group itselfyn@ve very few symmetry elements. We know thatjdotropic
materials, the elastic compliance tensor has twemircible parts, i.e., two scalar parts, so thannof the elastic

compliance tensor for isotropic materials deperaly on the norm of the scalar parts, .= Ns, Hence, the

ratio —> =1 for isotropic materials. For anisotropic materidate elastic constant tensor additionally contains
two deviator parts and one nonor part, so we ca'neje—d for the deviator irreducible parts ang-> for nonor
parts. Generalizing this to irreducible tensorstapank four, we can define the following norm oati—> for

scalar partsﬁ for vector parts,WoI for deviator partsﬁ for septor parts, andN—n for nonor parts. Norm

ratios of different irreducible parts representdhéotropy of that particular irreducible partytlean also be used to
assess the anisotropy degree of a material propsrywhole, we suggest the following two moresule
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Rule 2. When NS is dominating among norms of irreducible partg thoser the norm ratie—> is to one, the

closer the material property is isotropic.
Rule3. When Ns is not dominating or not present, norms of theeoihreducible parts can be used as a criterion.
But in this case the situation is reverse; thedathe norm ratio value we have, the more anisatrthe material

property is.

The square of the norm of the elastic stiffnessdefelastic constant tenscﬁmn is:

INF = (e + e + 23 e cl?)+ 2 el + Zlek?

mn mn
. . 1) \2
+25 (cY clzd)+ 3 (clen) (10
mn mn
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