
2021
Vol. 9 No. 7: 98

iMedPub Journals
http://www.imedpub.com

Review Article

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://colorectal-cancer.imedpub.com/archive.php

American Journal of Computer
Science and Information Technology

Software Quality and Software Quality
Models Practical Recommendations and

Research Negotiation Points

Abstract
Quality of software has great and important potential for a newly developed
country like Iran. But it is also an enormous challenge at the same time. Quality
models contribute to the consolidation and specification of the complex quality
issues. As a result of the discussions of quality experts from research and practice,
this paper shows which questions in the future must be dealt with most urgently
in the field of software quality models to decisively improve the state of research
and practice.

Keywords: Software; Computer engineering; ROI expectations; Quality models

Seyfali Mahini*
Department of Computer Science, Islamic
Azad University, Khoy, Iran

Corresponding author:
Seyfali Mahini, Department of Computer
Science, Islamic Azad University, Khoy, Iran

 my1341post@yahoo.com

Citation: Mahini S (2021) Software
Quality and Software Quality Models
Practical Recommendations and Research
Negotiation Points. Am J Compt Sci Inform
Technol Vol.9 No.7: 98.

Introduction
Software quality models are the basis for all quality-related
activities. The use of such models harbors untapped potential,
but also problems that practice and research have to face.
Not just in Iran, but worldwide, software has a reputation for
inevitable quality problems. It is said that the success of the
Iranian software industry depends on its quality management
skills. Software errors cause high costs through product recalls
and a lack of maintainability causes enormous economic damage.
In order to survive in global competition, differentiation through
quality is becoming more and more important so there is an
urgent need for action.

The first question that arises is: what is quality? Product quality
can be viewed from different perspectives. Product quality
models are a remedy to define more precisely what software
quality means in a certain context.

Various standards for quality models, such as the ISO standard
9126, company-specific standards, but also more recent academic
approaches, already exist, but leave questions unanswered. For
example, it is still not possible to aggregate individual quality
measurements to form more significant statements clearly
clarified. Another topic is the appropriate modeling of the
relationships between quality, costs and benefits [1].

The aim of this paper is to bring together the most pressing issues
in the field of software quality models. From these questions
we derive a research agenda for software quality models
which can give the community from research and practice a
common direction. In this context it can discussions and several
major challenges are identified. First is the measurement and
evaluation of quality, even with the help of quality models, is

often too unsystematic or only shows deficits, but no possibilities
or levers to remedy them. Second, the relationship between
quality and costs/benefits is not dealt with adequately. Thirdly,
the adaptation of quality models is a largely unprocessed but
practically relevant topic, since software is used in a wide variety
of domains and contexts. Fourth, it is important to have a clear
strategy the introduction of quality models in companies, as
the success of the model depends on it. Despite these points of
criticism, quality models provide valuable information.

In the following sections we present the main topics in detail and
give practical recommendations and relevant research questions.

Quality Measurements with Quality
Models
Quality models represent a systematic abstraction of quality
features for software. They generalize individual quality defects
and provide a basis for measurements. For many, the definition
and refinement of “ilities”, such as reliability or functionality in
ISO 9126, are sufficient for a quality model. Other approaches go
much further and describe causal relationships at a very detailed
level or the relationship with automated quality reviews [2].

When using quality models in software development, there are
various usage scenarios that build on one another. For example,
a model can first be used to understand quality. For this, the
complex and multi-layered aspects of software quality should be
described in a quality model in such a way that understanding
is improved. Only a structured approach, as offered by a quality
model, allows a meaningful definition of quality at all. This
definition can in turn be used as a starting point for the quality
analysis. The model can define indicators and metrics for this
and support the interpretation of the measurement results.

Received: June 11, 2021; Accepted: June 25, 2021; Published: July 02, 2021

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php2

American Journal of Computer
Science and Information Technology Vol. 9 No. 7: 98

Furthermore, the model should also show ways to improve
quality by helping to identify the relevant influencing factors and,
ideally, to predict quality at an early stage.

Basically, it can be stated that quality models must not be an
end in themselves, just as the measurement of quality cannot
be an end in itself. Rather, they always have to support specific
purposes. For example, they can help to make a make-or-buy
decision or determine whether a software ready for delivery.

Experiences and challenges: Quality planning and assurance in
software and systems engineering requires the quantification of
target and actual values. This requires an operationalization of
the quality aspects in the form of concrete metrics. The selection
of suitable metrics depends on a number of factors (such as
the development context), without which a quality model loses
a large part of its usefulness. Since currently existing standards
such as only include a high level of abstraction due to the desired
breadth of application, they cannot offer this operationalization
and their practical use remains extremely questionable.
Therefore, a uniform meta-model would be desirable that allows
the description of both necessary and optional components of a
quality model. The Factors-Criteria-Metrics (FCM) and methods
operate on such a meta-level Goal/Question/Metric (GQM).
FCM describes a simple meta-model for quality models, GQM a
procedure for developing customized measurement systems [3].

Furthermore, there are only imprecise, implicitly defined terms
for many quality aspects (e.g. maintainability, performance,
accuracy). Even terms that appear comparatively clear, such as
size, cost or effort, can have very different definitions in different
environments. Overall, the goal-oriented derivation of suitable
metrics and the minimization of the set of metrics to be recorded
turn out to be difficult, especially with "soft" influencing factors
such as experience, team coherence or the quality of code
comments [4].

The lack of appropriate standards and guidance makes it difficult
for companies to identify the indicators that are important to
them. Often times it is not clear how existing measurement
programs can be used to answer new measurement targets.
In addition, baselines are usually missing in practice, so that a
comparative assessment of software quality is not possible.
Another experience with regard to software measurements is that
many companies prefer to orient themselves towards standards
in order to act in accordance with the state of the art and thus
protect themselves against risks (especially legal). As a rule,
however, these standards do not sufficiently take into account
the context of use. The preference for using rigid metric sets is
also likely to stem from the fact that the awareness that there
is a significantly higher number of variation parameters in the
software area than in production and manufacturing processes
and that metrics and quality models are therefore subject to much
greater variations is often not available. Examples of challenges
with regard to the technical implementation of software
measurements are the cost-efficient collection of data (possibly
through automated processes), the integration of measurement
tools in the development process and the harmonization of
measurements in the case of distributed development across

organizational boundaries [5].

Recommendations: The challenges result in three core
recommendations for quality measurements in practice:

• Metrics have to be derived from goals and fit for the
context.

• Existing measurement programs should be used as far as
possible to answer measurement goals. It is often helpful to have
software measurements taken in the context of others introduce
process improvement programs in order to use synergy effects.

• Software measurements should not start with goals
that are too ambitious (e.g. forecast). The development of
measurement competence in companies usually takes several
years. As a start the determination of baselines is recommended.

Research questions: These challenges and recommendations
give rise to research questions with regard to the measurement
of software quality. In the practical implementation, the question
arises for companies how to arrive at the metrics that are
important for their goals and boundary conditions. The derivation
and definition of such metrics is still a question for research. The
task of developing empirically robust industrial standards for
quality models that are sufficiently abstract on the one hand and
enable systematic instructions for adapting to company contexts
on the other hand can be central challenge in quality models.
Furthermore, the development of easy-to-use measurement
tools that can be easily adapted to these contexts should be
mentioned.

Costs and benefits of quality
The relationship between costs and quality, which has been an
issue in the manufacturing industry for many years, has also found
its way into software engineering. In a profit-oriented company,
quality can never be seen in isolation from other factors, but has
to be a cost/benefit is subjected to consideration [6].

Experiences and challenges: Measurements and activities
relating to software quality are still not a matter of course in
many companies and organizations. The aspect of software
quality is often ignored or is only taken into account when
significant problems have already arisen. Quality aspects are
often considered very late in the development process, usually
in connection with the first test processes. Most quality defects
can no longer be remedied at this point, or only with great effort.

One reason for the lack of awareness of software quality in
development organizations is that the economic significance of
software quality is often unclear to decision-makers. The relation
of measures to improve quality to higher goals of an organization,
in particular to business goals, is often not explicitly shown. The
costs of measures and measurements are clearly visible, while
the benefits in the form of future savings and avoided follow-
up costs are not obvious and difficult to quantify [7]. This is
related to the fact that software is seen in many companies as an
implementing factor and not as a value-adding factor in relation
to corporate goals, although it is now the most important driver

2021

© Under License of Creative Commons Attribution 3.0 License 3

American Journal of Computer
Science and Information Technology Vol. 9 No. 7: 98

of innovation in many industries. In addition comes the contrast
between the supposedly long-term amortization of quality
measures and short-term planning horizons at management
level. Experience from industrial practice shows that there are
often high ROI expectations with regard to measures to improve
software quality.

Software quality is often not relevant when placing orders.
In the case of tenders, the economically more favorable offer
usually counts. Long-term costs (in particular costs caused by
quality defects) are not or not sufficient when placing the order
considered. One of the reasons for this is that the meaning of
non-functional properties is difficult to convey and non-functional
requirements are more difficult to translate into contractual ones
regulations are to be integrated. In the public sector, there are
now first approaches to take economic feasibility studies into
account for IT investments (in particular the Wi Be procedure).

Recommendations: The following recommendations can be made
for the successful introduction of cost/benefit considerations of
quality in practice:

• It is important to explicitly explain the costs and benefits
of software quality and its measurement. This includes the
presentation of the importance of software quality in the context
and in relation to IT and business goals of an organization. In some
cases, the consequences of poor quality can be presented in the
form of additional costs, risks and liability in the legal sense.

• Quality is sometimes in conflict with (short-term) cost and
deadline targets or is at least perceived that way. A corresponding
trade-off must be included here so that an “appropriate” quality
level is achieved within a tolerance threshold to be defined. The
medium and long term the positive influence of quality on costs
and deadlines must be explicitly shown.

• Contractors should insist on their clients that even non-
functional ones requirements are formulated early and precisely.

Research question: A systematic review of the cost-benefit
relationships in the area of software quality would make the
use of quality models much easier. By providing cost-benefit
models that make quantitative statements regarding the long-
term benefit of quality activities can make, many statements that
are more of an anecdotal nature today could be put on a solid
foundation and thus contribute to the factual discussion. Metrics
at the engineering level of an organization must match higher;
business-relevant metrics (such as a balanced scorecard defined)
can be related.

Adaptation of quality models
Software is used in a wide variety of areas and domains, which
places very different demands on the systems. This also applies to
quality requirements. The standardized models, such as ISO 9126,
nowadays do not offer any specific guidelines on how to adapt
them to these differences [8]. This is a strong obstacle to their
operationalized use in software projects. We have deliberately
chosen the term “adaptation” for this topic, as the alternative
“tailoring” often only stands for the omission of parts, but not for

the expansion.

Experiences and challenges: A number of quality models from
a wide variety of sources already exist. Models can be found
in the scientific literature and in various general and domain-
specific standards such as. In addition, define companies that
go further with employing software development, typically in
house guidelines that are adapted to the specific requirements
in the respective projects. Finally, the use of implicitly specify a
corresponding quality model for measuring tools. With quality
models for software development, one basically moves between
the complete self-definition of the model and the unchanged use
of an existing model. The former allows precise tailoring to specific
needs, but also requires enormous effort and corresponding
expertise. The latter, on the other hand, minimizes the effort,
but can cause considerable problems if the model used does
not match the actual circumstances in the company or project.
Furthermore, experience has been made in various projects that
quality models can become very extensive in specific applications,
as they have to cover detailed information on a wide variety of
quality aspects [9].

For these reasons, we consider a quality model to be useful, which
defines a standardized basic model, but also includes a process for
adapting to your own requirements and circumstances. In order
to develop such a model, however, some fundamental questions
still need to be clarified. Only the SQUID approach currently
includes a procedure for the specific definition of quality models,
but offers fewer details on their operationalization.

Recommendations: An important point in the adjustment
of quality models is the identification of the most important
adjustment dimensions or the influencing factors. The goals of
the company or project are decisive for this. It must be examined
how these affect the quality model and the model must be
adapted accordingly. A validation must then take place to
check whether the adjustments make sense. This can be done,
for example, through feedback with developers and quality
assurance personnel. Integration into the process model used
is also necessary for longer-term use. For example, it must be
specified at which decision points (quality gates) the model will
be used or when measurements will take place. It is unlikely
that the quality requirements and the quality model will be fully
available at the beginning. This is why a bootstrapping procedure
seems to make the most sense: Requirements and quality model
are iteratively and incrementally compared over the course of the
project. Priorities and weightings of the individual parts of the
quality model are also determined, which in turn could determine
the budget for quality, as in activity-based costing. With a fixed
budget, this can of course determine the weightings.

Research questions: From these challenges and recommendations
we derive a number of research questions, the answers to
which we see as necessary for a practical adaptation of quality
models. First of all, it has to be examined which spectrum of
quality models currently exists and how great the variability is in
quality models across domains, projects and technologies. The
experiences presented indicate a significant variability, which,

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php4

American Journal of Computer
Science and Information Technology Vol. 9 No. 7: 98

however, has not yet been scientifically investigated. However,
this is important in order to derive a usable, sufficiently flexible
adjustment mechanism. Furthermore, it must be analyzed which
components a quality model necessarily and optionally includes
both with regard to the structure of a quality model and with
regard to the content. With the cost aspects, the question arises
what relationship between existing cost accounting and Quality
models as this could be an important factor in customization. It
is also still unclear how a comprehensive and extensive quality
model (after its adaptation) can be validated.

Introduction of quality models
The basic requirement for successful quality management is
the creation of the necessary acceptance in the corresponding
companies. Abstract considered the introduction of quality
models the goal of taking quality characteristics the voluntability.
Similar to functional Requirements should be achieved that
quality requirements are of course implemented and not omitted
or changed at will. This introduction is a complex process that
needs to be carefully planned and to be analyzed in advance on
the expected benefits. Which factors are decisive for this, must
be examined more closely.

Experiences and challenges: The use of quality models is usually
carried out in the context of long-term quality initiatives and
rarely to resolve acute problems. Due to this long-term nature,
it is often difficult to motivate the persons involved as they
cannot easily recognize the immediate benefits of initiatives. On
the contrary, quality initiatives require most involved, at least
at the beginning, a certain extra work. Unfavorable boundary
conditions, such as delivery pressure, lack of resources and lack
of management make the introduction complicate.

Another problem with the introduction of quality models
can result from organizational separations and the resulting
perspectives of the employees of different process phases. So
it is difficult to convince developers who are never entrusted
with maintenance tasks from the advantages of readable code.
Frequently, not all project participants have the appropriate
education that would allow them to allow the long-term benefit
of quality initiatives or the consequences of non-compliance with
quality standards detect.

In addition to these motivational-personnel problems, the already
discussed inflexibility of today's quality models is a difficulty as
they adapt to the project-specific quality needs complicated
and thus contributes neither to the effectiveness nor to the
efficiency of quality management. Especially automatic checking
methods for quality criteria suffer often under a high number of
false positives that can quickly lead to a demotivation of project
participants [10].

Recommendations: It is advisable to make the introduction of
quality models as carefully as possible in order not to overwhelm
the stakeholders by a wealth of innovations. It has been very
helpful proved to identify and present an immediate benefit
for the individual stakeholders. This helps to increase the
acceptance for long-term innovations. Beyond this immediate

benefit, of course, it must be ensured that all stakeholders have
a consistent understanding of the objectives to be achieved
with the help of quality models and are particularly aware of
the long-term consequences of non-consideration of quality
properties. Here, quality models, which take into account cost/
benefit aspects, provide valuable services. Important for the
acceptance of quality measurements in software and system
development is that it is seen as a means for purpose and not as
an end in itself. Measurement results should be communicated
in regular feedback to the parties, and insights from analysis
should result in actions. The inflexibility of quality models and
the results problems with the introduction can be addressed
with the adaptation mechanisms discussed in the last section.
The following dimension of the adjustment is important here:
organizational customization. An adaptation of the quality
model to the organization is important in order to demonstrate
the project participants that the use of a quality model is not a
bureaucratic fulfillment of standards, but a means of increasing
the effectiveness and efficiency in development, employee
specific perspectives. In addition to the actual adjustment, the
quality model for the project participants should provide tailored
perspectives. As a result, every project participant is provided only
to the proportion relevant to him, and a stress with unnecessary
information is avoided, configuration of the checking methods. It
is necessary to adapt review tools and methods to the respective
context that the number of false positives on one bearable
measure (<5%) is limited.

Research questions: From these findings and recommendations,
there are a number of research questions regarding the
introduction of quality models. In addition to the more technical
questions about improved adaptability and better tool support
of quality models, especially socio-psychological aspects (Change
management) play a role. In particular, a structured work-up of the
findings from other disciplines, e.g. process launch, a promising
starting point to better understand what problems encounter
the introduction of quality models on a socio-psychological level.
Beyond these concrete issues, it makes sense to consider the
topic of quality even more in the training of future skilled workers
and thus achieve a situation in the long term, in which quality
models do not have to be introduced, as they are an integral part
of each software project.

Discussion and Conclusion
In all these discussions, a point has remained undisputed: a
model for the product quality of software is centrally located for
dealing with quality in software development. The topic is too
diffuse to get along without clear definitions and definitions. For
this reason, a central task for research in the next few years is to
develop a quality model based on existing standards and recent
results, which meets the current challenges. Software quality is a
crucial factor for the competitiveness of companies and business
locations. Quality models are an accepted means of dealing with
software quality. However, there are very different types of use
and also very different characteristics in the different domains
and companies. For all these characteristics, however, a number

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php5

American Journal of Computer
Science and Information Technology Vol. 9 No. 7: 98

of research questions that need to be answered to make software
quality in practice. This paper provides practical recommendations
and a research agenda with the central points based on a detailed
discussion with academic and industrial experts. It reflects
an extensive spectrum of experience. The proposals offer an
opportunity to the Iranians to make engineering services popular
in the world for software as well.

References
1 Preiss O, Wegmann A (2003) A systems perspective on the

quality description of software components. J Syst Cybern Inf
1: 18-24.

2 Broy M, Jarke M, Nagl M, Rombach D (2006) Manifest:
Strategische bedeutung des software engineering in
deutschland. Infor Spec 29: 210-221.

3 Punter T, Kusters R, Trienekens J, Bemelmans T, Brombacher
A (2004) The W-process for software product evaluation: a
method for goal-oriented implementation of the ISO 14598
standard. Softw Qual J 12: 137-158.

4 Basili VR (1992) Software modeling and measurement: The
goal/question. Metric.

5 Wagner S, Broy M, Deibenböck F, Klas M, Liggesmeyer P et
al (2010) Praxisempfehlungen und Forschungsagenda. Infor
Spec 1: 25-29.

6 Deissenboeck F, Wagner S, Pizka M, Teuchert S, Girard JF
(2007) An activity-based quality model for maintainability. In
2007 IEEE International conference on software maintenance
184-193.

7 Garvin D (1984) What does ‘Product Quality’Really Mean. MIT
Sloan Manag Rev 26: 1-4.

8 Dromey RG (1995) A model for software product quality. IEEE
Trans Softw Eng 21: 146-162.

9 Heidrich J, Münch J, Trendowicz A (2009) Messbasierte
ausrichtung von softwarestrategien an geschäftszielen. Int J
Inf Manage 2: 82-89.

10 Heitlager I, Kuipers T, Visser J (2007) A practical model for
measuring maintainability. 6th Int Conf Inf Commun Technol
20: 30-39.

