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Editorial
The nature of biology is diverse and heterogeneity always

exists in different organisms, organs or tissues and even
different cells. However, the heterogeneity of samples is often
overlooked in most biological or clinical studies, which results
in the loss of critical clinical information [1]. The majority of
experimental results from cell or tissue cultures are based on
the assumption that all cells in a culture are homogeneous.
Given the fact that each cell holds a “unique barcode” that
represents the DNA, RNA, and protein activities, it is essential
to conduct omics studies at the single cell level [2].

Traditional bulk analytical methods (e.g., microscopy or flow
cytometry) measure the average profile of the entire cell
population, which have limitations in characterizing complex
diseases such as cancer [3]. Recent advances in single-cell
sequencing have led to paradigms shift in the field of
genomics, away from bulk analysis and toward comprehensive
studies of individual cells [4]. For instance, in cancer research,
single-cell sequencing provides means to characterize intra-
tumor heterogeneity in a large population of tumor cells,
resolve cell-to-cell variations and identify rare cells, which
opens up opportunity to determine key molecular properties
that influences clinical outcomes [5]. Development of
technologies for single-cell isolation, whole transcriptome
amplification (WTA) [6] or whole-genome amplification (WGA)
[7] along with next-generation sequencing provides the
foundation that has enabled comprehensive single cell
analysis. Generation of single-cell sequencing data from
human cells can be described through three key steps: (1)
isolation of single cells, (2) single cell sequencing and (3)
bioinformatics and statistical analyses [8].

Isolating single cells from a tissue mass or from cell
suspension is the first key step. The current methods of
isolating single cells from abundant cell populations include
manual picking, fluorescence-activated cell sorting, laser
capture microdissection and microfluidics [9]. Manual picking
of single cells has been employed in many protocols, such as in
Smart-Seq, Smart-Seq2 and Cel-Seq library preparation.
Normally, a micropipette is used to select a target single cell
under a microscope [10,11]. However, compared to other
single cell isolation methods, this method has poor sensitivity
and is time consuming [1,12,13]. Fluorescence-activated cell

sorting has been broadly applied in many single-cell
transcriptome studies [14]. Using uniquely tagged
fluorophores, cell subpopulations of interest are sorted into a
well plate within minutes for library preparation [15].
However, low numbers of cells (<one million) (e.g., circulating
tumor cells) are not easily detected and isolated by
aforementioned method. Additionally, flow cytometry is
unable to process small volume of cells (i.e., several
microliters) [16]. Laser capture microdissection is able to
harvest cells of interest or isolate specific cells by removing
unwanted tissues in either formalin-fixed paraffin-embedded
(FFPE), cryostat sections using ultraviolet (UV) or infrared (IR)-
coupled microscopy. A 7.5-μm spot-sized laser is pulse-fired at
FFPE sections or frozen sections with the aid of a target beam
to effectively isolate the single cells [17]. However, noise
reduction and precision have yet to be improved during the
UV/IR dissection [18].

Recent advances in microfluidic technologies (e.g., droplet
microfluidics) have made it possible to sequentially process,
manipulate small volume of sample and isolate single cells
from bulk populations [19]. Recently, label-free cell sorting
technologies including actuated cell sorting and passive cell
sorting are employed to sort cells based upon their physical
properties including shape, size, elasticity, polarizability,
density etc. using microfluidic devices [20]. Actuated cell
sorting relies upon optical, electrical or magnetic field-induced
stimuli to sort cells across fluid streamlines. Passive cell sorting
enables cell sorting based upon adhesion, filtration and inertial
hydrodynamic forces. These technologies have enabled the
high throughput sorting and capturing of single cells for
downstream processes [21].

There are multiple methods available for the preparation of
single cell sequencing libraries (i.e., DNA and RNA sequencing)
following the process of single cell isolation. The sequencing
libraries preparation process involves amplification of the
genomic DNA or complementary DNA (in the case of RNA
sequencing) [22]. WGA is necessary for single-cell DNA
sequencing. Ideally, the procedure of WGA should have
minimal sequence errors and biases. Multiple methods for
WGA have been introduced such as degenerate
oligonucleotide-primed polymerase chain reaction (DOP-PCR),
multiple displacement amplification (MDA) and multiple
annealing and looping-based amplification cycles (MALBAC).
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They have their own advantages and limitations in respect to
genome coverage and uniformity. Single-cell RNA sequencing
requires amplification of the RNA transcripts before
sequencing. Various methods of single-cell RNA sequencing
have been substantially reviewed [23,24]. Recently, novel
methods for single cell sequencing have been introduced,
including accessible DNA regions (Assay for Transposase-
Accessible Chromatin with high-throughput sequencing (ATAC-
seq)[25], simultaneous DNA sequencing and methylation [26]
and simultaneous sequencing of DNA and RNA [27].

As for the bioinformatic and statistical analyses, single cell
molecular subtyping, rare cell type detection, mutation
detection, analyses of intra-tumour heterogeneity and copy
number variations profiling are the most common analyses for
cancer research. The data of single cell RNA sequencing have
distinctly different distributional properties (e.g, zero-inflated
expression distribution) compared to conventional bulk
average RNA sequencing data probably due to the cell cycle
effects [28]. As for the DNA sequencing, WGA typically
produces data with limited genome coverage, and allelic
dropout that results in the loss of one or more alleles during
amplification. To date, a range of online resources and tools
are available to ease the process of analyzing the data of single
cell assay [29]. However, some analytical tasks still remain
challenging, including comparing data sets across experimental
conditions or organisms and integrating data from different
genomics.

In short, single-cell analysis, in particular, single cell
transcriptomic analysis has revolutionized our understanding
of gene regulation networks, metastasis and the complexity of
cell-to-cell heterogeneity, and this technology is expected to
eventually benefit human in a way that has never been
available at the bulk level. Researchers are still figuring out the
way to deal with the data sets and the algorithms that are the
most useful for analyzing a single cell. Further improvement of
library preparation methods, single cell sequencing and
bioinformatics will provide a deeper understanding of how
gene regulation operates in a particular cell type.
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