
Rapid Lineage Assignment and Phylogenetic Tracking of SARS-CoV-2 Cases
through Automated Library Preparation, Sequencing and Bioinformatics Analysis
Mark Pandori1*, Andrew J Gorzalski1, Irina St Louis1, Danielle Siao1, Lauren Siao1, Diego Bunuel1, 
Stephanie Van Hooser1, David C Hess1, Heather Kerwin2, Joel Sevinsky2, Kevin Libuit2 and Suhash 
Verma2

1Department of Pathology and Laboratory Medicine, University of Nevada, Reno, Nevada, US
2Department of Microbiology and Immunology, University of Nevada, Reno, Nevada, US
*Corresponding author: Mark Pandori, Department of Pathology and Laboratory Medicine, University of Nevada, Reno, NV, US, Tel:

4156329183; E-mail: MPANDORI@MED.UNR.EDU

Received date: July 28, 2022, Manuscript No. IPMM-22-14176; Editor assigned date: August 01, 2022, PreQC No. IPMM-22-14176 (PQ); Reviewed 
date: August 16, 2022, QC No. IPMM-22-14176; Revised date: September 29, 2022, Manuscript No. IPMM-22-14176 (R); Published date: October 
07, 2022, DOI: 10.36648/IPMM.6.6.001

Citation: Pandori M, Gorzalski AJ, Louis IS, Siao D, Siao L, et al. (2022) Rapid Lineage Assignment and Phylogenetic Tracking of SARS-COV-2 Cases 
through Automated Library Preparation, Sequencing and Bioinformatic Analysis. J Mol Microbiol. Vol:6 No:6

Abstract
The COVID-19 pandemic has provided a stage to illustrate
that there is considerable value in obtaining rapid, whole
genomic information about pathogens. Herein we describe
the utility of automated SARS-CoV-2 library preparation,
genomic sequencing and a bioinformatic analysis pipeline to
provide rapid, near “real-time” SARS-CoV-2 variant
description. We evaluated the turnaround time, accuracy
and other quality parameters obtained from clear labs Dx
automated sequencing instrumentation from analysis of
continuous clinical samples from January 1, 2021 to October
6, 2021. Additionally, we illustrate instances where near
real-time analysis provided intelligence relevant to
concurrent disease control investigations.
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Introduction
Genomic sequencing of infectious agents provides data that

describes organisms at the Single Nucleotide Polymorphic (SNP)
matrix, the highest level of discriminatory capability. For
epidemiologic investigations, SNP level discrepancies can
provide powerful intelligence in the determination of the
relatedness (phylogenetic) of cases. Barriers have existed to
having sequence and phylogenetic information concurrent to
the investigational process: Sequencing itself is a laboratory
process of significant complexity that can require extensive
hands on time, followed by lengthy sequencing processes. When
raw sequence data is obtained it is initially unusable and
requires computational processes prior to providing utility for
epidemiologists and disease control investigators. These
processes can be arcane and time consuming, lengthening
further the time between specimen collection and the moment
of utility in an investigation [1].

Contact tracing efforts can stem transmission networks and
this work is well-supported by phylogenetic information [2,3].
Early detection of pathogen variants can allow a more rational
and effective channeling of public health resources [4]. It can be
reasoned that significantly reducing the time from case
detection to case description through sequencing analysis would
impact COVID-19 disease control efforts. We sought to construct
a system of SARS-CoV-2 sequencing and data collection and
analysis that provides rapid, near “real time” phylogenetic
intelligence. This system was used to augment surveillance for
the state of Nevada and was found to offer significant impact to
disease control investigation and to variant detection.

Materials and Methods

SARS-CoV-2 RNA isolation and detection through RT-
PCR analysis

RT-PCR was performed using the CDC influenza SARS-CoV-2
multiplex assay. Nucleic acid extractions were performed by
apostle mag touch nucleic acid extraction automation systems.
Specimens found positive with a Ct value less than 30 were
subjected to targeted sequencing. Additionally, experiments
were performed to evaluate the ability to sequence specimens
of higher Ct value and this cutoff was elevated to 33 based upon
those results.

Sequencing
Extracted RNA samples, tested by way of the CDC influenza

SARS-CoV-2 (Flu SC2) multiplex assay are diluted as follows: If
Ct<15.0, then 1:1000; If Ct>=15.0 and Ct<=18.0, then 1:100; If
Ct>=18.0 and Ct<23.0, then 1:10; If Ct>=23.0, no dilution
required. Specimens with Ct values of 30 or above were
appraised for suitability in sequencing and for part of the
project, specimens with Ct values equal to or less than 33 were
included. The clear lab Dx sequencing methodology is complex
and lengthy and is provided as supplemental material.
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Bioinformatics analysis
Analysis of SARS-CoV-2 genomic data was performed using 

titan clear labs and titan augur run, two Workflow Description 
Language (WDL) workflows within the Theiagen Public Health 
Viral Genomics (PHVG) Dock store collection. PHVG WDL 
workflows consist of freely available containerized 
bioinformatics algorithms, such as those hosted on the StaPH-B 
DockerHub repository, and were designed to run on general-
purpose containerized workflow execution infrastructures 
including light-weight compute resources running miniwdl, local 
or cloud based High Performance Compute (HPC) systems with 
access to the cromwell engine, or various web applications that 
provide a graphical user interface to non-technical users, such as 
DNA nexus or terra. For this study, Titan clear labs and titan 
augur run were accessed and run using the terra platform. 
Source code for the PHVG WDL workflows has been made 
publicly available with the AGPL-3.0 license on GitHub. The titan 
clear labs work flow was utilized to generate consensus 
assemblies from raw clear labs read data and to perform SARS-
CoV-2 lineage and clade designations for each sample. Briefly, 
human reads were removed from clear labs read data using the 
NCBI SRA human scrubber. De-hosted reads were then 
assembled as per the Artic nCoV-2019 novel coronavirus 
bioinformatics protocol with a modification whereby the artic 
minion normalize flag was adjusted to 20000 to account for clear 
labs sequencing depths. The resulting consensus assemblies 
were then analyzed with pangolin and next clade to perform 
lineage and clade designations, respectively [5,6]. NCBI’S VADR 
tool was also employed to screen for potentially errant features 
(e.g. erroneous frame-shift mutations) in the consensus 
assembly.

The sequence alignment file (BAM) generated by the titan 
clear labs workflow was visualized and manually assessed using 
the CLC Genomic Workbench software.

The titan augur run workflow was utilized to perform 
phylogenetic and cluster analysis of the SARS-CoV-2 datasets. 
Titan augur run executes subcommands from the Next strain 
Augur Toolkit through the use of a modified version of the broad 
institute's SARS-CoV-2_nextstrain WDL workflow to construct 
SARS-CoV-2 Maximum Likelihood (ML) and time trees as well 
as an auspice compatible JSON file for interactive 
visualization. Phylogenetic tree visualizations were constructed 
by uploading the auspice compatible JSON files generated by 
titan augur run to the auspice web application.

Results
From January 1, 2021 through October 6, 2021, 10,102 

specimens found positive for SARS-CoV-2 were retained or 
obtained by the Nevada State Public Health Laboratory (NSPHL) 
for genomic sequencing. Specimens with the cycle threshold (Ct 
value) of 30 or lower (as per CDC SARS-CoV-2/Influenza A/B 
Multiplex Real-Time PCR) were subject to automated library 
preparation and sequencing on clear lab DX instrumentation as 
described in materials and methods (section sequencing). 
Ninety-one (91) exceptions to the Ct cutoff occurred whereby 
RNA samples with Ct between 30 and 40 were analyzed.

Preparation of extracted RNA for initiation of sequencing
included 60 to 90 minutes of laboratory work time per 64
specimens. This time included dilution of RNA samples and
loading of specimens onto the sequencing platform. Upon
completion of the procedure, sequence data (both FASTQ and
FASTA formats) was available through a cloud-based system
within 20 hours (after 10/15/21, 12 hours) of extracted RNA
being loaded to the system. For lineage assessment and for
public health utilization of the data, generated FASTQ files were
manually or automatically uploaded to a specific bioinformatics
computational pipeline.

Assessment of data quality and coverage
From January 1, 2021 through October 6, 2021, 10,102

extracted RNA samples from positive cases were analyzed by
sequencing. We assessed the performance of the automated
sequencing platform with regard to genomic coverage and
depth. For input specimens with a Ct value of 30 or lower,
sequencing on the clear labs Dx platform resulted in genomic
assemblies with greater than or equal to 90% coverage of the
reference SARS-CoV-2 genome in 70% of instances
(7026/10102). Coverage of 75% of the reference genome was
accomplished in 80% of instances (8091/10102). Coverage (%) of
SARS-CoV-2 genome was assessed on the basis of Ct value
(through Ct 30) as determined by diagnostic RT-PCR for cases
overall and no significant correlation was found (R=0.0362).
However, for specimens with Ct value greater than 30 (91
instances), the correlation between Ct value and coverage was
more substantial (R=0.82) [7]. Specimens with Ct values greater
than 30 were found to have a mean genomic coverage of 61.8%
while specimens with Ct values below 30 were found to have a
mean coverage of 82.1%. For specimens with Ct values greater
than 30, coverage of at least 90% of the genome occurred at a
frequency of 30.5%.

For specimens with 90% or greater coverage of reference
genome, in all instances were equipment batch runs were
maximized (32 specimens tested/run) mean depth of coverage
per base was 1124x with a standard deviation of 1157x (min:
12x, max: 15,111x).

Lineage assessment
While 90% or greater coverage was accomplished in 70% of

cases, lineage assessments by PANGOLIN were accomplished in
80% (6,779/8,468) of cases, omitting cases where PANGOLIN
made a call of lineage “B.1” when coverage of the corresponding
genome was less than 90% [8]. Such instances are complicated
by an inability of PANGOLIN to make a higher granularity call
rather than an accurate call of the lineage B.1 simply due to an
absence of calls at particular genomic positions.

Error rate assessment
We sought to determine empirically the accuracy of long read

sequencing (ONT) on the clear lab instrument by examining the
performance of sequencing a synthetically constructed genome
(WuHan-1, Twist Biosciences). Sequencing of the chemically
synthesized genome was performed twice and the error rate
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observed at every sequenced base in the genome was assessed.
The error rate was determined by the number of miscalls vs. the
number of accurate calls. Two independent sequence tests of
the synthetically constructed genome on the ONT platform
included one run with an average depth of coverage of 6821x
(“Run 1”) and another with average read depth of 341x (“Run
2”). For Run 1, the mean error rate for bases with 1000x or
greater coverage was 0.86%. For RUN 2, the mean error rate for
bases with 45x or greater coverage was 0.99%. The same
calculation an Illumina-based sequencing run showed an
average error rate of 0.17%.

Certain base sites showed notably higher rates than average
on both of the sequencing platforms evaluated (Tables 1 and 2).
We generated a list of high sequencing error sites by applying
the following criteria: For each ONT sequencing run we
calculated the average sequencing error rate for the entire
genome. We then determined the specific error rate for each

position in the genome, and compared it to the overall 
sequencing error rate. For each sequencing run we identified 
the positions in the genome that had error rates 10-fold or 
higher than the average error rate. We then filtered these sites 
based on two additional criteria: 1) The error rate had to be at 
least 5-fold higher than average in the other ONT sequencing 
run and 2) We filtered out sites that were in the bottom 10% of 
coverage for either run. This yielded a set of 93 base 
positions that demonstrated reproducible elevated error rate. 
The error rate across these 93 sites was 11.9%. Of these 93 
base sites 4 were a, 41 were C, 41 were G and 7 were T. Thus, in 
our data set GC base pairs (88% of high error sites) were far 
more likely to generate a high error site than AT base pairs. A 
summary of the highest error-rates sites is shown in Tables 1 
and 2.

Base location ONT Error
Rate (ER)

ONT ER fold
over mean

ONT Error
Rate (ER)

ONT ER fold
over mean

Illumina Error
Rate (ER)

Illumina ER
fold over
mean

Gene location

Run 1 Run 1 Run 2 Run 2

5736 36.79% 43 31.13% 31 0.22% 1.3 NSP3

227 29.20% 34 28.73% 29 0.18% 1.09 UTR
(untranslated)

3903 21.91% 25 13.76% 14 0.41% 2.5 NSP3

6078 21.52% 25 25.19% 25 0.28% 1.7 NSP3

16507 21.16% 25 23.16% 23 0.23% 1.4 HEU CASE

17708 20.18% 23 18.50% 19 0.10% 0.61 HEU CASE

20931 19.01% 22 24.23% 24 0.23% 1.4 2'-0-ribose
methyltransfer
ase

28568 18.81% 22 17.88% 18 0.27% 1.6 nudeocapsid
phosphoprotei
n

7392 17.46% 20 22.40% 23 0.26% 1.5 NSP3

Mean Base 0.86% 1 0.99% 1 0.17% 1

*20X as determined by average of two runs

Table 2: Illumina sequencing: Sites with 10X over mean error rates.

Base location Illumina error rate
(ER)

Illumina ER fold
over mean

ONT error rate ONT ER fold over
mean

Gene location

6669 0.0748 45 0.0597 6.9 NSP3
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295 17 4.71 29 0.0045 0.52 Nucleocapsid
phosphoprotein

3350 4.07 25 0.0399 4.6 NSP3

26715 3.15 19 0.0019 0.21 Membrane
glycoprotein

6628 3.09 19 0.024 1.45 NSP3

9009 2.46 15 0.0062 0.72 NSP4

17385 2.17 13 0.0176 2.04 Heucase

26720 2.12 13 0.014 1.63 Membrane
glycoprotein

25325 2.11 13 0.0032 0.37 Spike

28469 1.71 10 0.0182 2.12 Nucleocapsid
phosphoprotein

Mean Base 0.0017 1 0.0086 1

Next, we examined the type of sequencing error that
occurred. Off all sequencing errors made in both ONT runs,
93.1% were transition errors (C->T, T->C, A->G, G->A). This bias
has been reported before for ONT sequencing and is likely due
to the chemical similarities of purines (A and G) and pyrimidines
(C and T) [9]. Thus, it is more likely an ONT sequencing run
would mistake one purine for another purine or one pyrimidine
for another pyrimidine than mistake a purine for a pyrimidine.

We examined these errors with regard to their position in the
genome by binning the genome into 5 kb sections (e.g. 1-5000
bp, 5001-10,000, etc.) and counting the number of high error
rate sites in each bin. This analysis revealed no bias for genome
position (data not shown) [10].

Lastly, we examined the sequence context for each of these
93 sites. To do this we took the 3 base pairs upstream and
downstream of each error site to create a 7 base pair sequence.
We then counted how many times that 7 bp sequences were
found in our sequence of the synthetic genome. 7 base pair
sequences appeared on average 3.2 times in the genomes
(range of 1 to 9 times). 25 of the sequences in our set were
unique in the genome, so no conclusions could be drawn from
those. Another 59 sequences were found multiple times in our
genome but only one of those instances demonstrated an
elevated sequencing error rate. This suggests that the extent of
sequence context examined here did not play a role in the
sequencing error rate. There were 3 instances of sequences
found twice in our set of 137 sites (GGCCACA, TCAGCAC,
AGAGCAA) but in all cases there were additional instances of
these 7 bp sequences in the genome that did not have an
elevated sequencing error. The only 7 bp sequence that had
evidence of sequence dependence was the sequence GACGGTT.
This sequence appears three times in the synthetic genome and
all three instances had an elevated error rate. This sequence had
an average error rate of 13.1% across all three sites and both

ONT runs. It is possible that there are more complex sequence 
contexts at work that our analysis did not reveal. None of these 
sites were observed to have an elevated error rate, using the 
same criteria on the synthetic genome sequenced with the 
illumina platform.

Turnaround time
We sought to determine the average turnaround time for 

generation of sequence/lineage data for specimens submitted to 
the NSPHL for diagnostic SARS-CoV-2 testing. Samples were 
drawn randomly from April through May of 2021 (98 samples) 
and the time from receipt at the Laboratory to the time when 
the lineage data was provided to a state public health database 
was determined. The overall average was 2.77 days (standard 
deviation, 1.2 days). The majority of samples were assessed 
diagnostically (“positive” or “negative” for SARS-CoV-2) by RT-
PCR, sequenced and analyzed (lineage assigned, phylogenetic 
relations assessed) within 2 days (within 2 days: 57/98, 58%; 
within 3 days: 82/98, 84 %).

Control investigation impact of rapid sequencing 
and bioinformatics analysis

The ability to discern genomic differences rapidly at the single 
nucleotide level provides a capability to discriminate cases 
within the same lineage. Four illustrative examples are provided:

In February 2021, a cluster of 23 B.1.1.7 cases were detected 
in washoe county within a 10-day time frame. Genomic 
sequencing as described herein indicated that such cases were 
not genetically uniform and that two distinct clusters were 
visible, along with other genetically B.1.1.7 cases (Figure 1).

Journal of Molecular Microbiology 
Vol.6 No.6:001

2022

4 This article is available from: https://www.imedpub.com/journal-molecular-microbiology/

https://www.imedpub.com/journal-molecular-microbiology/


Figure 1: Cases of B.1.1.7 in Washoe County, February, 2021.
This illustrates the four different B.1.1.7 clusters identified
through genomic sequencing.

These data comported with information gathered through the
disease control investigation process. The first cluster involved a
private gathering which occurred on February 22, 2021, with 81
confirmed attendees, where 26 of them attended a secondary
gathering held the following day. The contacts to the probable
index case were found to possess identical genetics. The
probable index case was a resident of another state, and was
present at both gatherings.

42 cases were associated with an out of state volleyball
tournament which occurred on February 27-28, 2021. The
NSPHL notified WCHD of cases with B.1.1.7 and upon further
investigation it was determined these initial cases were linked
through athletics, the youth club and later to the high school
volleyball teams. Sequence data provided the information that
connected the high school cases to the volleyball club and
consequently, the out of state tournament. This indicated that
this tournament was the likely source of introduction for this
particular cluster.

Figure 1 illustrates the four different B.1.1.7 clusters identified
through genomic sequencing. The genomic sequencing data
guided contact tracing efforts had linked cases on the 23 SNP
mutation line had been associated to two unique clusters
(WC1967 and WC1983). The 24 SNP mutation line shows three
cases contact tracing had linked to three unique clusters were
genetically identical. The 25 SNP mutation line calls attention to
three cases that were separate from the largest cluster
(WC1967), and the largest cluster on the 25 SNP mutation line
shows cases from all four clusters were genetically related and
several cases not associated to a cluster (“NONE”) also were
related.

By July 21, 2021, there were 14 unique B.1.617.2 (Delta
variant) clusters detected with at least one case in each cluster
sequenced. Two clusters are described further to describe the
utility of SNP-level data.

A delta (B.1.617.2) cluster was identified through contact
tracing and case investigation efforts for cases working in a
manufacturing plant. Some cases were linked to the workplace
but had other possible exposures. Through phylogenetic
analysis, among the initial cases grouped into the cluster

(WC2217), three cases were genetically distinct from the cluster 
and were residing in the same household. The household was 
originally associated to cluster WC2217 since the suspect index 
case for this household worked at the manufacturing warehouse 
and was believed to have been exposed in the workplace. 
However, there were other possible exposures, including travel 
history to a neighboring state. Sequence data demonstrated an 
introduction of the delta variant into the household 
independent from the workplace cluster WC2217. As a result, 
the household initially tied to WC2217 was disassociated from 
the manufacturing cluster. This example was used to remind 
disease investigators to consider all possible routes of exposure 
prior to associating a case with an infection chain.

One of the earliest identified B.1.617.2 clusters, WC2216, 
resulted in 19 cases, six hospitalizations, and three fatalities due 
to COVID-19 infection (Figure 2).

Figure 2: Phylogenetic relationships of B.1.617.2 (Delta) cases
in July, 2020, in Washoe County, NV. The legend is stratified on
epidemiologically identified clusters (WC_ID) and includes cases
not linked to any cluster at all, identified as “None”.

Virus detected and sequenced and located in this cluster has a
spike mutation protein A222V. Phylogenetic analysis revealed a
case associated with a different cluster, WC2267, which had zero
SNP differences from cases linked to WC2216. Upon
communicating with the disease investigators who investigated
cases associated with WC2267, this separate social cluster
resulted in the hospitalization of a couple in their 30s with no
known underlying health conditions. Traditional case interviews
had not yielded connections with these two clusters through
named contacts or exposures, therefore genetic sequencing data
alone demonstrated a linkage in these two notably virulent
clusters.

Discussion
To date, most methods for sequencing the genomes of

infectious agents have required large amounts of laboratory and
computational time, in addition to expertise. All of this served as
a barrier to implementation of a rapid, near real-time utilization
of genomic data. Herein, we sought to remove that barrier
through the use of novel, available tools. The first of those is a
commercially available device capable of fully automating the
genomic sequencing process of SARS-CoV-2. The second was the
use of an open source bioinformatics tool which rapidly converts

Journal of Molecular Microbiology 
Vol.6 No.6:001

2022

© Copyright iMedPub 5



raw sequence data to lineage and provides facile pathways to
phylogenetic relatedness analysis.

Utilizing this novel system, we found that epidemiological
data integrity is greatly improved when a multidisciplinary
approach is used to consider both epidemiological and genetic
data. Genomic sequencing provides the data that disease
investigators and contact tracers can use to verify epidemiologic
hypotheses. This is particularly useful in large outbreaks where a
correct identification of clusters is necessary for proper contact
tracing to stop further spread. Moreover, sequence data was
found to serve as a good reference to confirm clusters identified
so that discordances in information gathered through traditional
investigation can be revisited. In multiple investigations, SNP
level phylogenetic information was able to reveal individuals
associated with the same cluster but who were not forthcoming
otherwise during regular investigations.

It is notable, that a centralized laboratory system for
sequencing and sequence analysis would likely not produce the
benefits described. Turnaround times for shipping, batching and
analyses in a centralized system would not foster the use of
genomic data in near-real time to impact disease control.
Certainly, centralized systems of capability and expertise could
play other roles in genomics, medicine, and public health,
particularly at a strategic level.

Part of the system used in this work included a novel software
solution to the conversion of raw sequence data to that which is
useful to public health professionals. This solution used herein
was found to possess multiple advantages.

The first advantage is that it utilizes Google Cloud Platform
(GCP) as a compute and storage resource. This provides a nearly
inexhaustible and scalable amount of resources for the fastest
turnaround times achievable. GCP parallelizes all analyses and is
capable of handling large numbers of compute requests that are
often required by genomic analysis. The object model for cloud
storage offered by GCP ensures that storage space is never an
issue.

The second advantage of this solution is the adoption of the
Terra platform. Although most cloud platforms are capable of
the scalability and cost efficiency mentioned above, most of
these require extensive maintenance of cloud architecture using
IT professionals. This can drive up cost, inhibit adoption, and
stifle innovation. Terra removes the time consuming
maintenance of a cloud-computing infrastructure, allowing
scientists to focus on the content, not on becoming
bioinformaticists or Linux system administrators. Training on
Terra is simple, and Terra provides for multiple levels of
permissions and security, making sure scientists are permitted
access only what they need, and not anything else. Furthermore,
as data sharing becomes necessary, these same permission and
security features can allow effective data sharing between
entities on the county, state, and federal levels.

The third advantage involves the use of Dockstore. The Terra
platform utilizes workflows that are freely available on
Dockstore, an online repository of genomic workflows for
biomedical research and public health. Lastly, the entire system,
from Google to Terra to Dockstore, is reproducible, portable, and
can be implemented in a matter of days in just about any
location globally [8-10].

Conclusion
The quality of sequence data generated by the clear labs, ONT

driven platform was found to be higher than expected. We
found average error rates similar to those previously observed
and lower than seen previously. Certain sites in the SARS-CoV-2
genome were found to be more prone to sequencing error, with
only one possible sequence theme consistently associated with
error. Further investigation will be required.
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