iMedPub Journals www.imedpub.com **2017** Vol.1 No.3:18

Production of Terpenoids, Terpene Alcohol, Fatty Acids and N₂ Compounds by Bacillus *amyloliquefaciens* S5i4 Isolated from Archaeological Egyptian Soil

Abstract

The strain Bacillus amyloliquefaciens $S_{S_{1}}$ (B. amyloliquefaciens) isolated from Idfou Temple, Egypt, was identified by 16S rRNA and has accession number AB813716. B. amyloliquefaciens S₅I₄ strain was tested for its antifungal and antibacterial activity against pathogenic fungi and bacteria. The antifungal activity of Sel, strain examined by using Aspergillus flavus MD341 (A. flavus) producing aflatoxin B1 as an indicator. The antibacterial activity of S_eI₄ strain was examined by using Staphylococcus aureus KF 771028 (S. aureus) causing food poisoning as an indicator. This S_eI_a strain used to produce the antimicrobial compounds then the extraction, purification and identification of the antimicrobial agents were carried by Gas liquid chromatographic mass spectrometry (GLC-MS). The extract was subjected to GLC-MS to afford 26 peaks corresponding to 26 compounds in ethyl acetate and 20 peaks corresponding to 20 compounds in methylene chloride extract. Most of these compounds are terpenoids (41.30%) terpene alcohols (15.22%), nitrogenous compounds (19.57%) and fatty acids (21.74%) with one miscellaneous group (2.17%) respectively. These compounds produced by S_{cl} strain could be mechanism of biocontrol against some fungal diseases.

Keywords: Antifungal compounds; *B. amyloliquefaciens*; GLC-MS; Terpenoids; Terpene alcohols; Fatty acids

Received: October 25, 2017; Accepted: November 01, 2017; Published: November 08, 2017

Introduction

The pathogenic fungi and bacteria attack human, animals and plants. Since penicillin was discovered, the isolation and identification of new antimicrobial compounds produced by microorganisms hadn't been stopped. The fungal diseases affecting crops are a major threat to food production and food storage. Fungal growth on foods causes undesirable changes making them harmful for consumption and may cause mycosis [1]. *Aspergillus flavus is* producing aflatoxins which are potent agents causing liver cancer [2]. Chemical preservatives have been used carefully for the control of fungi because of their often toxicities to men and farm animals. These days, consumers prefer foods containing natural and safe preservatives [3]. Thus, biologically control of pathogenic fungi through the use of natural antagonistic microorganisms is alternative to chemical preservatives or chemical pesticides [4]. In this respect, bacilli particularly *Bacillus amyloliquefaciens* and *Bacillus subtilis* and their metabolites have great antimicrobial compounds and thus effectively compete with other microorganisms such as fungi and bacteria. *B. amyloliquefaciens* was reported effective for the biocontrol of multiple plant diseases and post harvested pathogen [5]. Members of Bacillus are called biopesticides. Bacillus-based product represents about half of commercially available bacterial biocontrol agents [6]. Bacilli can antagonize pathogens by producing fungal toxic compounds, competing for nutrients and stimulating the defense capacities of the host plant [7].

Bacillus amyloliquefaciens is important producer of antimicrobial molecules and secondary metabolites for biocontrol of pathogens [8,9]. *B. amyloliquefaciens* HNA3 strongly inhibited *Aspergillus niger* ATCC9642 [10]. Bioactive secondary metabolites are believed to play a key role in microbial interactions by mediating

© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://www.imedpub.com/advanced-techniques-in-clinical-microbiology/1

Fifi M Reda and Mohamed Ismail

Seham Abdel-Shafi*,

Department of Botany and Microbiology, Faculty of Science, Zagazig University, Egypt

*Corresponding author: Seham Abdel-Shafi

hegazyseham@yahoo.com

Department of Botany and Microbiology, Faculty of Science, Zagazig University, Egypt.

Tel: 00201289600036

Citation: Abdel-Shafi S, Reda FM, Ismail M (2017) Production of Terpenoids, Terpene Alcohol, Fatty Acids and N₂ Compounds by Bacillus *amyloliquefaciens* S5i4 Isolated from Archaeological Egyptian Soil. Adv Tech Clin Microbiol Vol.1 No.3:18 antagonistic activity and intercellular communication [11]. Reda et al. [12] reported that *B. amyloliquefaciens* S_5I_4 produced antibacterial compound and was identified as butanedioic acid, octadecyl1(1carboxy1methylethyl)4octylester. The commercially available strain of *Bacillus amyloliquefaciens* FZB24 is applied as bio-fertilizer, as it stimulates plant growth and suppress plant pathogenic organisms Secondary metabolites such as iturin and surfactin produced by *Bacillus amyloliquefaciens* BNM122 increase the antifungal activity [13].

In the present work *B. amyloliquefaciens* S_5I_4 inhibits *Aspergillus flavus* MD 341 and *S. aureus* KF 771028. Ethyl acetate extract of CFS of *B. amyloliquefaciens* S_5I_4 was subjected to GLC M.S to afford 26 peaks corresponding to 26 compounds and 20 compounds using ethyl acetate extract and methylene chloride solvents respectively. Most of these compounds are terpenoids, terpene alcohols, nitrogenous compounds and fatty acids. These compounds produced by S_5I_4 strain could be mechanism of biocontrol against some fungal diseases and Stapylococcal toxins.

Materials and Methods

Soil samples collection

Soil samples were collected from different archaeological regions of Egypt. These samples were obtained by removing and rejecting the first two inches and about 250 to 500 g for each site at a depth of 5-10 cm was taken into a clean sterilized plastic bag and transferred to the laboratory. Different samples were taken at randomly from each locality and were brought together into one composite soil sample.

Isolation and purification of bacterial isolates

Bacterial colonies are usually isolated and counted by using standard dilution plate procedure [14]. After incubation period for 24 h at 37°C, pure single colony transferred onto nutrient agar slants for more investigations [15].

Screening of *Bacillus amyloliquefaciens* S5I4 for its antifungal and antibacterial activities

Bacillus amyloliquefaciens S_{5l_4} was screened for the antifungal using Aspergillus flavus MD 341 was obtained from the central Lab. Of Residues in Agric. Products, Agric, Pesticides Res. Centre, Dokki, Egypt producing aflatoxin B_1 and antibacterial using *S. aureus* KF 771028. The *B. amyloliquefaciens* S_5l_4 was grown on nutrient agar medium for 24 h at 37°C. Agar discs 7 mm in diameter were cut off by a cork borer and transferred to the surface of agar plates which freshly seeded with the *S. aureus* KF 771028. The tested fungal organisms were cultivated on Czapex' Dox agar media. The widths of inhibition zones produced by the producer organisms were measured 24 h and 5-7 days for bacteria and fungi, respectively.

Molecular identification of *Bacillus amyloliquefaciens* S5I4

Identification of the most antagonistic activity isolate code S_5I_4 was confirmed by investigation of 16S rRNA gene sequence which submitted to Gene Bank with accession number AB813716. The

identification of the selected isolate was carried out by the authorities of the Unit of Molecular Biology Sigma Laboratory, EL Mohandesein; Egypt.

Gas liquid chromatography analysis

Thin layer chromatography was performed in Silica Gel 60 $\rm F_{_{254}}$ were precoated TLC aluminium sheets for Thin Layer Chromatography.

Size: 5 × 20 cm, Layer Thickness: 0.2 mm, Sheets Package: 100.

A Division of EM Industries, Inc. Associate of Merck KGa A, Dramastadt. Made in Germany.

Method of gas liquid chromatography-mass spectrometry (GLC/MS): Data of experiment were determined in Al-Azhar University, Faculty of Science; The Regional Center for Mycology and Biotechnology.

Two different samples with different solvents ethyl acetate and methylene chloride have been submitted for Chromatographic analysis in Gas Chromatography Unit.

Instrumentation and chromatographic conditions:

GC/MS system: SHIMADZU GC/MS-QP5050A

Software: CLASS 5000

Searched library: Wily Mass Spectral Data Base

Column: DB1, 30 m; 0.53 mm ID; 1.5 um film (J&W scientific)

Carrier gas: Helium

Ionization mode: Electric Ionization (EI)

Ionization voltage: 70 ev

Temperature program: 40° C (1 min) - 160° C (1 min) at 5° C/min-270°C (2 min) at 7.5° C/min

Detector temperature: 300°C

Injector temperature: 230°C

Results

Strain identification

The identification of *B. amyloliquefaciens* $S_{s}I_{4}$ was molecularly confirmed by investigation of 16S rRNA analysis. Sequence data were submitted to GenBank at NCBI web site (http://www.ncbi.nlm.nih.gov) with accession number AB813716. BLAST program (http://www.ncbi.nlm.gov/blast) for phylogenetic analysis was used to assess the similarities of obtained 16S rDNA gene sequence (Figure 1).

The strain $S_{5}I_{4}$ revealed definitely antifungal properties against *A. flavus* MD 341 producing aflatoxin B1 aflatoxin B1as besides strong antibacterial activities against *S. aureus* KF 771028 producing food toxins as an indicator (Figures 2A and 2B).

Gas liquid chromatographic mass spectrometry (GC-MS)

In the current study, it was found that after culturing 4 liters of

liquid nutrient broth media, the yield that obtained from *Bacillus amyloliquefaciens* S_5I_4 strain by using two different polarity solvents methylene chloride and ethyl acetate was very small yield (7 mg) so, we used GLC- MS in identification of the extracted compounds.

The results in **Table 1** and **Figures 3 and 4** revealed that ethyl acetate extract was subjected to GC-M.S to afford 26 peaks corresponding to 26 compounds and 20 peaks corresponding to 20 compounds in methylene chloride extract (46 compounds from both extracts). The results in **Table 2** and **Figures 5-8** represented the classification and identification of these compounds into five groups; nineteen terpenoids, seven terpene alcohols, nine nitrogenous compounds, ten fatty acids and one miscellaneous group.

The results implied that solvent extraction had different roles to recover different compounds, which had effective inhibition in various pathogenic microorganisms. In addition, the amount of

ACTCTGTCACTTCGGCGGCTGGCTCCATAAAGGTTACCTCACCGACTTCGGGTGTTACAAA CTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCT GATCCGCGATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTGCAGACTGCGATCCGAACT GAGAACAGATTTGTGGGATTGGCTTAACCTCGCGGTTTCGCTGCCCTTTGTTCTGTCCATT GTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCC TCCGGTTTGTCACCGGCAGTCACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCA AGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCA TGCACCACCTGTCACTCTGCCCCCGAAGGGGACGTCCTATCTCTAGGATTGTCAGAGGATG TCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTG CGGGCCCCCGTCAATTCCTTTGAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCT TAATGCGTTAGCTGCAGCACTAAGGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTT ACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGT CAGTTACAGACCAGAGAGTCGCCTTCGCCACTGGTGTTCCTCCACATCTCTACGCATTTCA CCGCTACACGTGGAATTCCACTCTCCTCTTCTGCACTCAAGTTCCCCAGTTTCCAATGACCC ${\tt TCCCCGGTTGAGCCGGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCGAGCCCTTTACG}$ CCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA ${\tt GCCGTGGCTTTCTGGTTAGGTACCGTCAAGGTGCCGCCCTATTTGAACGGCACTTGTTCTT}$ CGTCATTGCGGAGATCCCTACTGCTGCCTCCGTAGAGTCTGGGCGTGTCTCAGTCCAGTGT CTATGGCGGGTCACTGTAGGTAGCGGAAGCAACTTATGTTCGTGACACATGTCCGGTTAGT

Figure 1 Sequence of 16S rRNA gene of DNA the most potent antibacterial of *Bacillus amyloliquefaciens* S514.

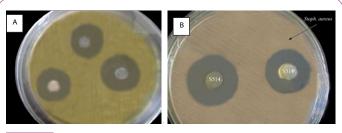


Figure 2 A) The antifungal activity of S514 strain examined by using *Aspergillus flavus* MD341 producing aflatoxin B1as an indicator. B) The antibacterial activity of S514 strain was examined by using *Staphylococcus aureus* KF 771028 causing food poisoning as an indicator.

crude extracts from each solvent is one of the factors used in determining the choice of solvent for extraction.

Discussion

It is important to find safe and cheap antimicrobial agents to inhibit pathogenic fungi and bacteria. The strain $S_{s}I_{a}$ showed antifungal and antibacterial activities. This may due to secondary metabolites such as terpenoids, alkaloids and flavinoids. This is similar to previous work. Aflatoxin B₁ (AFB₁), produced by A. flavus, is secondary metabolite, highly toxic and carcinogenic. S. aureus produce toxins in food. Although S. aureus are easily killed by cooking the toxins are resistant to heat and couldn't be destroyed by cooking. Staphylococcal toxins are fast acting symptoms usually develop within 30 min to 6 h [16]. The data revealed that the strain *Bacillus amyloliquefaciens* $S_{s}I_{a}$, showed strong antibacterial and antifungal activities. Our results supported by reports that most Bacillus spp. produce many antibiotics such as bacillomycin, fengycin, mycosubtilin and zwittermicin, which are all effective at suppressing growth of target pathogens in vitro and/or in situ [17].

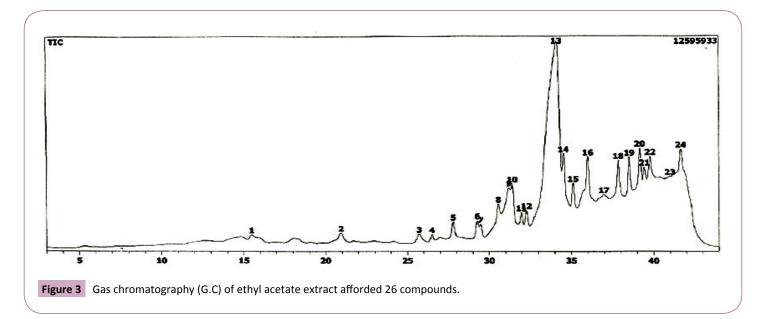
A microbial biological control agent may act against pathogens differently: by weakening or destroying the pathogen, competing for space and nutrients or producing antimicrobial compounds and enzymes that attack the cell components of the pathogens [18]. In order to investigate the potential biocontrol mechanisms of strain *Bacillus amyloliquefaciens* NJZJSB3, the nonvolatile antifungal compounds it produces were identified as iturin homologs using HPLC-ESI-MS. Antifungal volatile organic compounds were identified by gas chromatography-mass spectrometry. The detected volatiles toluene, phenol, and benzothiazole showed antifungal effects against *S. sclerotiorum* in chemical control experiments. Strain NJZJSB3 also produced biofilm, siderophores and cell-wall-degrading enzymes (protease and β -1,3-glucanase) [19].

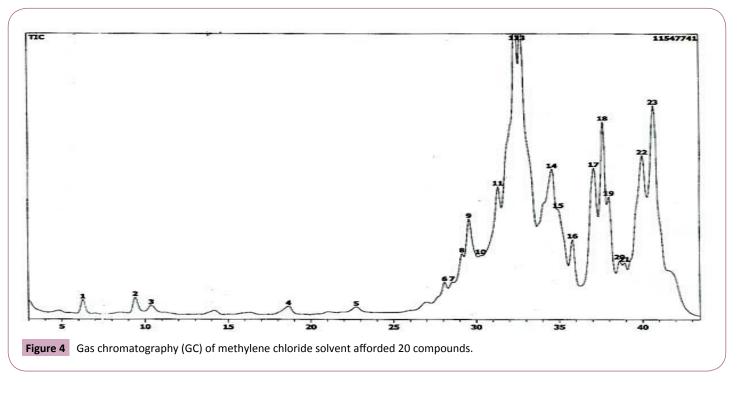
Most of terpenoids, terpene alcohols, nitrogenous compounds and fatty acids are previously known from essential oils [20] and reported here from a microorganism. These results are in agreement with Yuan et al. [21] who characterized the volatile organic compounds (VOCs) produced by B. amyloliquefaciens strain NJN-6 by using solid-phase micro extraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) to extract and identify the VOCs and identified antagonistic VOCs as those that reduced the growth and inhibited the spore germination of F. oxysporum. Also, it was detected 36 compounds, including 12 benzenes, seven alkyls, three alcohols, seven ketones, two aldehydes, three naphthyls, one ester and one ether compound. In this connection, some of our identified compounds are very chemically similar in structure to; N-Isopropyl-beta-lactimimide and 17 beta, hydroxy-1alpha, 17alpha dimethyl-5 alpha androstan-3-one abundantly used as antimicrobial flagyl and fusidic acid.

Although many of the bacterial volatiles could not be identified due to no matches being found with mass-spectra of volatiles in the data base. Most of them were species-specific [22].

No. Compound structure M.W. Molecular form No. Compound structure M.W. Molecular form 1 Cyclo4-methyl or 4-methyl cyclohexene or 1 96. C,H_z 1 1.2-Cyclopentanedione,3,3,5,5-tetramethyl,1.2-cyclopentane or 3,3,5,5-tetramethyl,1.2-cyclopentane 154. C,H_z,O_z 3 2-methyl-1-dodecene or 1-dodecene, 2-methyl 112. C,H_z,N_z 3 Ch-burlyl-1-methyl-3-piperidinyl)propan-2- one 211. C_z,H_z,N_z 2 4 4-hexene-3-one, 5-methyl 112. C,H_z 5 1-deimorethyl-1-deioxapiro(4.7)dodec 7-ene 197. $C_{z_1}H_z,N_z$ 6 Bis (3,5,5rtimethyl-tyl-propyl-Cyclohexane 168. $C_{z_1}H_z,O_z$ 9 N-formyl-alpha-aminocrotonic acid methyl ester 133. $C_yH_NO_z$ 7 2-Hexene-1-ol, 2-thyl 128. $C_{z_1}H_z,O_z$ 9 1-carboxymethyl-4-hydroxyc-free 183. C_zH_z,O_z 10 Cyclo hexane, 1,5-diethyl-2,3-dimethyl 168. $C_{z_1}H_z,O_z$ 9 1-carboxymethyl-4-hydroxyc-formethyl-2- mydrode 183. C_zH_z,O_z 11 Cyclo hexane, 1,5-diethyl-2,3-dimeth		26 compounds at ethyl acetate extract			20 compounds at methylene chloride			
1	No	Compound structure	M.W.		No.	Compound structure	м.w.	Molecular form
1 1	1		96.	C ₇ H ₁₂	1		154	$C_9H_{14}O_2$
3 2-methyl-1-dodecene or 1-dodecene, 2-methyl 182 C ₁₁ H ₂₂ N 3 (3-t-butyl-1-methyl-3-piperidinyl)propan-2-one 211 C ₁₁ H ₂₂ NO 4 4-hexene-3-one, 5-methyl 112 C ₁₂ H ₂₀ O 4 3, 3-Dimethyl-2-penylbutyl benyl supplicite 270 C ₁₂ H ₂₂ S 5 3-Ethyl-5-Methyl-1-Propyl-Cyclobexane 168 C ₁₀ H ₂₀ O 6 N-Formyl-alpha-aminocrotonic acid methyl ester 7-ene 173 C ₁₁ H ₂₀ NO, 7 2-Hexene-1-ol, 2-ethyl 128 C ₁₁ H ₂₀ O 7 BORNEOL 154 C ₁₁ H ₂₀ O 8 Tridecanaldehyde Or Tridecyl aldehyde 198 C ₁₁ H ₂₀ O 7 BORNEOL 154 C ₁₁ H ₂₀ O 9 N-Hexyl Tiglate 184 C ₁₁ H ₂₀ O 7 BORNEOL 152 C ₂₁ H ₂₀ O 10 Cyclo hexane,1,5-diethyl-2,3-dimethyl 168. C ₂₁ H ₂₀ O 11 Menthyl-beta-D-glucopyranoside 318 C ₁₂ H ₂₀ O 11 Hexadecanoic acid Or Lauric acid Or Neo-Fat 200 C ₁₁ H ₂₀ O 13 3-pyrrolidino-3-oxo-propylsuccinimide 224 C ₁₁ H ₂₀ N ₂₀ 12 Cyclohexane-1-ol,2,2 dimethyl 126 C ₁₁ H ₂₀ O	2	N-Isopropyl-beta-lactimimide	112	C ₆ H ₁₂ N ₂	2	Dodecanoic acid	200	C ₁₂ H ₂₄ O ₂
5 3-Ethyl-5-Methyl-1-Propyl-Cyclohexane 168 $C_{12}H_{13}$ 5 11-(aminomethyl)-1.4-dioxaspiro(4.7)dodc: 2-nee 197 $C_{11}H_{19}$ N O2 6 Bis-(3,5,5trimethylhexyl) ether 270 $C_{12}H_{13}$ N O 2 $C_{11}H_{19}$ N O 7 2-Hexene1-ol, 2-ethyl 128 $C_{41}H_{10}$ O 7 BORNEOL 154 $C_{11}H_{10}$ O 8 Tridecanaldehyde Or Tridecyl aldehyde 198. $C_{11}H_{20}$ O 8 1-carboxymethyl-4-hydroxy-6-methyl-2-pyridone 183 $C_{41}H_{0}$ O 10 Cyclo hexane, 1,5-diethyl-2,3-dimethyl 168. $C_{11}H_{20}$ O 11 Menthyl-beta-D-glucopyranoside 318 $C_{18}H_{20}$ O, 11 Hexadecanoic acid or Palmitic acid or No-Fat 200 $C_{12}H_{20}$ O 13 3-pyrrolidino-3-oxo-propylsuccinimide 224 $C_{14}H_{10}$ N 12 Ovdudve cohexene-1-ol , 2,2dimethyl 126 $C_{41}H_{20}$ O 14 Phenyl Alanin-Proline Diketopiprazine 244 $C_{14}H_{10}$ N 12 Ovdudve cohexene-1-ol Or 126 $C_{41}H_{20}$ O 15 $1,3-Cyclopentanedione, 4-hydroxy-5-(3-methyl-but-but-pyl) 182 C_{10}H_{10}O 12 $	3		182		3		211	
5 3-Ethyl-5-Methyl-1-Propyl-Cyclohexane 168 $C_{12}H_{13}$ 5 11-(aminomethyl)-1.4-dioxaspiro(4.7)dodc: 2-nee 197 $C_{11}H_{19}$ N O2 6 Bis-(3,5,5trimethylhexyl) ether 270 $C_{12}H_{13}$ N O 2 $C_{11}H_{19}$ N O 7 2-Hexene1-ol, 2-ethyl 128 $C_{41}H_{10}$ O 7 BORNEOL 154 $C_{11}H_{10}$ O 8 Tridecanaldehyde Or Tridecyl aldehyde 198. $C_{11}H_{20}$ O 8 1-carboxymethyl-4-hydroxy-6-methyl-2-pyridone 183 $C_{41}H_{0}$ O 10 Cyclo hexane, 1,5-diethyl-2,3-dimethyl 168. $C_{11}H_{20}$ O 11 Menthyl-beta-D-glucopyranoside 318 $C_{18}H_{20}$ O, 11 Hexadecanoic acid or Palmitic acid or No-Fat 200 $C_{12}H_{20}$ O 13 3-pyrrolidino-3-oxo-propylsuccinimide 224 $C_{14}H_{10}$ N 12 Ovdudve cohexene-1-ol , 2,2dimethyl 126 $C_{41}H_{20}$ O 14 Phenyl Alanin-Proline Diketopiprazine 244 $C_{14}H_{10}$ N 12 Ovdudve cohexene-1-ol Or 126 $C_{41}H_{20}$ O 15 $1,3-Cyclopentanedione, 4-hydroxy-5-(3-methyl-but-but-pyl) 182 C_{10}H_{10}O 12 $	4	-4-hexene-3-one, 5-methyl	112	C,H,O	4	3, 3-Dimethyl-2-phenylbutyl phenyl sulphide	270	C ₁₈ H ₂₂ S
6Bits (3,5) Strinethylnexyl) ether270 $C_{xa} H_{ya} O$ 6ester143 $C_{e} H_{s} N O_{3}$ 72-Hexene-1-ol, 2-ethyl128. $C_{s} H_{uo} O$ 7BORNEOL154 $C_{un} H_{uo} O$ 8Tridecanaldehyde Or Tridecyl aldehyde198. $C_{13} H_{zo} O$ 8Camphor152 $C_{un} H_{uo} O$ 9N-Hexyl Tiglate184 $C_{11} H_{zo} O_{2}$ 91-carboxymethyl-4-hydroxy-6-methyl-2- pyridone183 $C_{e} H_{3} N O_{4}$ 10-Cyclo hexane, 1,5-diethyl-2,3-dimethyl168. $C_{32} H_{32} O_{2}$ 11Menthyl-beta-D-glucopyranoside318 $C_{a} H_{30} O_{5}$ 12Dodecanoic acid Or Palmitic acid or n-hexadecanoic acid Or Neo-Fat 12 Or Vulvic acid200 $C_{12} H_{22} O_{2}$ 11Menthyl-beta-D-glucopyranoside318 $C_{a} H_{20} O_{2}$ 132-cyclododecylethanol212 $C_{14} H_{22} O_{2}$ 133-pyrrolldino-3-oxo-propylsuccinimide224 $C_{14} H_{28} N_{2} O_{2}$ 142,2-Dimethyl-3-cyclohexane-1-ol Or Cyclohexane-1-ol,2,2dimethyl126 $C_{8} H_{12} O_{2}$ 133-pyrrolldino-3-oxo-propylsuccinimide244 $C_{4a} H_{4a} N_{4a} O_{4a} $	5	3-Ethyl-5-Methyl-1-Propyl-Cyclohexane	168		5		197	
8 Tridecanaldehyde Or Tridecyl aldehyde 198. C ₁₃ H ₂₀ O 8 Camphor 152 C ₁₀ H ₁₀ O 9 N-Hexyl Tiglate 184 C ₁₁ H ₂₀ O ₂ 9 1-Carboxymethyl-4-hydroxy-6-methyl-2- pyridone 183 C ₆ H ₃ N O ₄ 10 Cyclo hexane, 1,5-diethyl-2,3-dimethyl 168. C ₁₂ H ₂₄ 10 Decanoic Acid or Capric Acid 172 C ₃₀ H ₃₀ O 11 Hexadecanoic acid or Palmitic acid or n-hexadecanoic acid Or Palmitic acid or Neo-Fat 12 Dodecanoic acid Or Lauric acid Or Neo-Fat 12 Or Vulvic acid 200 C ₂₁ H ₂₄ O ₂ 11 Menthyl-beta-D-glucopyranoside 318 C ₃₀ H ₃₀ O 13 2-cyclododecylethanol 212 C ₁₄ H ₂₆ O ₂ 13 3-pyrrolidino-3-oxo-propylsuccinimide 224 C ₁₃ H ₁₆ O 14 2-2-Dimethyl-3-cyclohexene-1-01 Or Cyclohexene-1-01,2,2dimethyl 126 C ₆ H ₁₄ O 15 1,3-Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl) 182 C ₄₀ H ₁₄ O ₃ O 15 2-Methylcyclohexanol 114 C ₇ H ₁₄ O 15 1,3-Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl) 182 C ₄₀ H ₁₄ O ₃ O 16 Citronellyl propionate or 6-Octene-1- Ol,3-7-dimethyl-1-propionate 152 C ₄ H ₁₅ O ₂ <	6	Bis-(3,5,5trimethylhexyl) ether	270	$C_{18}H_{38}O$	6		143	$C_6H_9 N O_3$
9N-Hexyl Tiglate184 $C_{13} H_{20} O_2$ 91-carboxymethyl-4-hydroxy-6-methyl-2- pyridone183 $C_8 H_9 N O_4$ 10-Cyclo hexane, 1,5-diethyl-2,3-dimethyl168. $C_{12} H_{24}$ 10Decanoic Acid or Capric Acid172 $C_{16} H_{20} O_2$ 11Hexadecanoic acid or Palmitic acid or n-hexadecanoic acid256 $C_{13} H_{24} O_2$ 11Menthyl-beta-D-glucopyranoside318 $C_{12} H_{20} O_5$ 12Dodecanoic acid Or Lauric acid Or Neo-Fat 12 Or Vulvic acid200 $C_{12} H_{24} O_2$ 12Octanoic,2-methylcyclohexyl ester trans240 $C_{13} H_{26} O_2$ 132-cyclododecylethanol212 $C_{14} H_{26} O_2$ 133-pyrrolidino-3-oxo-propylsuccinimide224 $C_{11} H_{16} N_2$ 142-2-Dimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_{6} H_{16} O_1$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14} H_{16} N_2 O_2$ 152-Methylcyclohexanol114 $C_{7} H_{26} O_2$ 15 1.3 -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{23} H_{16} O_3$ 16Citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate152 $C_{6} H_{12} O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benznedicarboxylic acid, Didecyl este	7	2-Hexene-1-ol, 2-ethyl	128.	$C_8H_{16}O$	7	BORNEOL	154	C ₁₀ H ₁₈ O
9N-Hexyl rigiate184 $C_{13}H_{30}O_2$ 9pyridone183 C_8r_8 , NO $_a$ 10-Cyclo hexane, 1,5-diethyl-2,3-dimethyl168. $C_{12}H_{2a}$ 10Decanoic Acid or Capric Acid172 $C_{14}H_{20}O_2$ 11Hexadecanoic acid or Palmitic acid or256 $C_{13}H_{2a}O_2$ 11Menthyl-beta-D-glucopyranoside318 $C_{13}H_{2a}O_2$ 12Dodecanoic acid Or Lauric acid Or Neo-Fat200 $C_{23}H_{2a}O_2$ 12Octanoic,2-methylcyclohexyl ester trans240 $C_{33}H_{2a}O_2$ 142-cyclododecylethanol212 $C_{14}H_{2a}O_2$ 133-pyrrolidino-3-oxo-propylsuccinimide224 $C_{14}H_{16}N_2O_2$ 142-2-Oimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_6H_{16}O_2$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14}H_{16}N_2O_2$ 152-Methylcyclohexanol114 $C_{7}H_{36}O_2$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{30}H_{16}O_3$ 16Citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate152 $C_9H_{12}O_2$ 17 $Phthalic acid, Didecyl ester Or1,2-benzenedicarboxylic acid, Didecyl ester Or1,2-benzenedicarboxylic acid, Didecyl ester Or1,2-benzenedicarboxylic acid, Didecyl ester Or1,2-benzenedicarboxylic acid, Didecyl ester446C_{2a}H_{a6}O_4183-(trans-2-hydroxy cyclohexyl) propanol158C_{9}H_{30}O_218Decanoic acid or capric acid172C_{10}H_{10}O_219Octanoic acid, 2-methylcyclohexyl ester,trans$	8	Tridecanaldehyde Or Tridecyl aldehyde	198.	$C_{13}H_{26}O$	8	Camphor	152	C ₁₀ H ₁₆ O
11Hexadecanoic acid or Palmitic acid or n-hexadecanoic acid256 $C_{16}H_{32}O_{2}$ 11Menthyl-beta-D-glucopyranoside318 $C_{16}H_{30}O_{6}$ 12Dodecanoic acid or Lauric acid Or Neo-Fat 12 or Vulvic acid200 $C_{12}H_{42}O_{2}$ 12Octanoic,2-methylcyclohexyl ester trans240 $C_{25}H_{28}O_{2}$ 132-cyclododecylethanol212 $C_{44}H_{28}O_{2}$ 133-pyrrolidino-3-oxo-propylsuccinimide224 $C_{11}H_{16}N_{2}$ 142-Dimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_{8}H_{4}O$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14}H_{26}N_{2}O_{2}$ 152-Methylcyclohexanol114 $C_{7}H_{4}O$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{30}H_{4}O_{3}$ 16Citronellyl propionate or 6-Octene-1- $0,3,7$ -dimethyl-propionate152 $C_{9}H_{12}O_{2}$ 17Phthalic acid, Didecyl ester Or $1,2$ -benzenedicarboxylic acid or capric acid172 $C_{28}H_{46}O_{4}$ 19Octanoic acid 2-methylcyclohexyl ester, rans240 $C_{15}H_{28}O_{2}$ 18Decanoic acid or capric acid172 $C_{8}H_{16}O_{4}$ 19Octanoic acid, 2-methylcyclohexyl ester, rans240 $C_{15}H_{28}O_{2}$ 19Bicyclo(2,2,2)octan-1-amine125 $C_{8}H_{15}N_{15}O_{10}$	9	N-Hexyl Tiglate	184	$C_{11}H_{20}O_{2}$	9		183	C ₈ H ₉ NO ₄
11 n-hexadecanoic acid256 $C_{16}H_{32}O_{2}$ 11Menthyl-beta-D-glucopyrahoside318 $C_{16}H_{30}O_{6}$ 12Dodecanoic acid Or Lauric acid Or Neo-Fat 12 Or Vulvic acid200 $C_{12}H_{24}O_{2}$ 12Octanoic,2-methylcyclohexyl ester trans240 $C_{15}H_{26}O_{2}$ 132-cyclododecylethanol212 $C_{14}H_{26}O_{2}$ 133-pyrrolidino-3-oxo-propylsuccinimide224 $C_{11}H_{16}N_{2}$ 142,2-Dimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_{8}H_{14}O_{2}$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14}H_{16}N_{2}O_{2}$ 152-Methylcyclohexanol114 $C_{7}H_{14}O_{2}$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl-1-butenyl)182 $C_{10}H_{14}O_{3}$ 16citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate152 $C_{3}H_{24}O_{2}$ 16-Cis-8-Endo-Ethoxybicyclo(4,3,0)-3-Nonene- 7-exo-carboxaldehyde194 $C_{22}H_{46}O_{4}$ 172,6,6-Trimethylcyclohex-2-ene-1,4-Dione152 $C_{3}H_{24}O_{2}$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester146 $C_{28}H_{46}O_{4}$ 19Octanoic acid Or Margaric acid Or Hexadecanoic acid Or Margarinic acid270 $C_{17}H_{34}O_{2}$ 18Decanoic acid or capric acid172 $C_{8}H_{15}N$ 20Hexadecanoic acid Or Margarinic acid270 $C_{17}H_{34}O_{2}$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ <	10	-Cyclo hexane,1,5-diethyl-2,3-dimethyl	168.	$C_{12}H_{24}$	10	Decanoic Acid or Capric Acid	172	C ₁₀ H ₂₀ O ₂
1212 or Vulvic acid200 $C_{12}H_{22}O_2$ 12Octanoic, 2-methylcyclonexyl ester trans240 $C_{13}H_{28}O_2$ 132-cyclododecylethanol212 $C_{14}H_{28}O_2$ 133-pyrrolidino-3-oxo-propylsuccinimide224 $C_{11}H_{16}N_2$ 142,2-Dimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_8H_{14}O$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14}H_{16}N_2O_2$ 152-Methylcyclohexanol114 $C_7H_{14}O$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{10}H_{14}O_3$ 16citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate122 $C_{13}H_{24}O_2$ 16-Cis-8-Endo-Ethoxybicyclo(4,3,0)-3-Nonene- 7-exo-carboxaldehyde194 $C_{12}H_{16}O_2$ 172,6,6-Trimethyl-gropionate152 $C_9H_{12}O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid or capric acid172 $C_{10}H_{20}O_2$ 19Octanoic acid, 2-methylcyclohexyl ester, trans240 $C_{15}H_{28}O_2$ 19Bicyclo(2,2,2)octan-1-amine125 $C_8H_{15}N$ 20Heptadecanoic acid Or Margaric acid Or acid270 $C_{17}H_{34}O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{25}O$ 210,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)216 $C_{28}H_{48}O_2$ 20Dodecanol Molecular weight: Molecular form:18	11		256	$C_{16}H_{32}O_{2}$	11	Menthyl-beta-D-glucopyranoside	318	$C_{16}H_{30}O_{6}$
142,2-Dimethyl-3-cyclohexene-1-ol Or Cyclohexene-1-ol,2,2dimethyl126 $C_a H_{14} O$ 14Phenyl Alanin-Proline Diketopiprazine244 $C_{14} H_{16} N_2 O_2$ 152-Methylcyclohexanol114 $C_r H_{14} O$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{10} H_{14} O_3$ 16Citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate212 $C_{13} H_{24} O_2$ 16-Cis-8-Endo-Ethoxybicyclo(4,3,0)-3-Nonene- 7-exo-carboxaldehyde194 $C_{12} H_{18} O_2$ 172,6,6-Trimethylcyclohex-2-ene-1,4-Dione152 $C_9 H_{12} O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid or capric acid446 $C_{28} H_{46} O_4$ 183-(trans-2-hydroxy cyclohexyl) propanol158 $C_9 H_{18} O_2$ 19Bicyclo(2,2,2)octan-1-amine125 $C_8 H_{15} N$ 19Petadecanoic acid Or Margaric acid Or rtans270 $C_{17} H_{34} O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12} H_{26} O_2$ 10Beta Tocopherol Or 2H-1-Benzopyran-6- cid316 $C_{28} H_{48} O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12} H_{26} O_2$ 20Deic acid, Propyl ester324 $C_{21} H_{40} O_2$ 3434343420Deic acid, Propyl ester324 $C_{21} H_{40} O_2$ 3434	12		200	$C_{12}H_{24}O_{2}$	12	Octanoic,2-methylcyclohexyl ester trans	240	$C_{15}H_{28}O_{2}$
14Cyclohexene-1-ol,2,2dimethyl126 $C_{3}H_{14}O$ 14Printryl Admin-Profile Diketopipfazine244 $C_{14}H_{16}N_2O_2$ 152-Methylcyclohexanol114 $C_{7}H_{14}O$ 15 $1,3$ -Cyclopentanedione, 4-hydroxy-5- (3-methyl1-butenyl)182 $C_{10}H_{14}O_3$ 16citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate212 $C_{13}H_{24}O_2$ 16-Cis-8-Endo-Ethoxybicyclo(4,3,0)-3-Nonene- 7-exo-carboxaldehyde194 $C_{12}H_{18}O_2$ 172,6,6-Trimethylcyclohex-2-ene-1,4-Dione152 $C_{9}H_{12}O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid Or Capital Philosopyranic example16 $C_{12}H_{18}O_2$ 19Octanoic acid Or Margaric acid Or Hexadecane carbonic acid Or Margarinic acid270 $C_{13}H_{34}O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 21ol;3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)416 $C_{28}H_{48}O_2$ $C_{21}H_{40}O_2$ C	13	2-cyclododecylethanol	212	$C_{14}H_{28}O_{2}$	13	3-pyrrolidino-3-oxo-propylsuccinimide	224	$C_{11}H_{16}N_{2}$
152-Methylcyclonexanol114 $C_{\gamma}P_{14}O$ 15(3-methyl1-butenyl)182 $C_{10}P_{14}O_3$ 16Citronellyl propionate or 6-Octene-1- ol,3,7-dimethyl-propionate212 $C_{13}H_{24}O_2$ 16-Cis-8-Endo-Ethoxybicyclo(4,3,0)-3-Nonene- 7-exo-carboxaldehyde194 $C_{12}H_{18}O_2$ 172,6,6-Trimethylcyclohex-2-ene-1,4-Dione152 $C_{9}H_{12}O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester446 $C_{28}H_{46}O_4$ 183-(trans-2-hydroxy cyclohexyl) propanol158 $C_{9}H_{18}O_2$ 18Decanoic acid or capric acid172 $C_{10}H_{20}O_2$ 19Octanoic acid, 2-methylcyclohexyl ester, trans240 $C_{15}H_{28}O_2$ 19Bicyclo(2,2,2)octan-1-amine125 $C_{8}H_{15}N$ 20Heptadecanoic acid Or Margaric acid Or Hexadecane carbonic acid Or Margarinic acid270 $C_{17}H_{34}O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 210,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)416 $C_{28}H_{48}O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 22Oleic acid, Propyl ester324 $C_{21}H_{40}O_2$ 20Condecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 22Oleic acid, Propyl ester324 $C_{21}H_{40}O_2$ 20Condecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$	14		126	$C_8^{}H_{14}^{}O$	14	Phenyl Alanin-Proline Diketopiprazine	244	$C_{14}H_{16}N_2O_2$
16ol,3,7-dimethyl-propionate212 $C_{13}H_{24}O_2$ 167-exo-carboxaldehyde194 $C_{12}H_{18}O_2$ 172,6,6-Trimethylcyclohex-2-ene-1,4-Dione152 $C_9H_{12}O_2$ 17Phthalic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester Or 1,2-benzenedicarboxylic acid, Didecyl ester446 $C_{28}H_{46}O_4$ 183-(trans-2-hydroxy cyclohexyl) propanol158 $C_9H_{18}O_2$ 18Decanoic acid or capric acid172 $C_{10}H_{20}O_2$ 19Octanoic acid, 2-methylcyclohexyl ester, trans240 $C_{15}H_{28}O_2$ 19Bicyclo(2,2,2)octan-1-amine125 $C_8H_{15}N$ 20Heptadecanoic acid Or Margaric acid Or Hexadecane carbonic acid Or Margarinc acid270 $C_{17}H_{34}O_2$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 21 $0,3,4$ -dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)416 $C_{28}H_{48}O_2$ $C_{17}H_{30}O_2$ $C_{12}H_{40}O_2$ 22Oleic acid, Propyl ester324 $C_{21}H_{40}O_2$ $C_{12}H_{40}O_2$ $C_{12}H_{40}O_2$	15	2-Methylcyclohexanol	114	$C_7H_{14}O$	15		182	$C_{10}H_{14}O_{3}$
172,6,6-1rimethylcyclonex-2-ene-1,4-Dione152 $C_{3}H_{12}O_{2}$ 171,2-benzenedicarboxylic acid, Didecyl ester446 $C_{28}H_{46}O_{4}$ 183-(trans-2-hydroxy cyclohexyl) propanol158 $C_{9}H_{18}O_{2}$ 18Decanoic acid or capric acid172 $C_{10}H_{20}O_{2}$ 19Octanoic acid, 2-methylcyclohexyl ester, trans240 $C_{15}H_{28}O_{2}$ 19Bicyclo(2,2,2)octan-1-amine125 $C_{8}H_{15}N$ 20Heptadecanoic acid Or Margaric acid Or acid270 $C_{17}H_{34}O_{2}$ 20Dodecanol Molecular weight: Molecular form:186 $C_{12}H_{26}O$ 21ol;3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)416 $C_{28}H_{48}O_{2}$ $C_{11}H_{40}O_{2}$ $C_{12}H_{40}O_{2}$ 22Oleic acid, Propyl ester324 $C_{21}H_{40}O_{2}$ $C_{12}H_{40}O_{2}$ $C_{11}C_{1$	16		212	$C_{13}H_{24}O_{2}$	16		194	$C_{12}H_{18}O_{2}$
19 Octanoic acid, 2-methylcyclohexyl ester, trans 240 C15H28O2 19 Bicyclo(2,2,2)octan-1-amine 125 C8H15N 20 Heptadecanoic acid Or Margaric acid Or Hexadecane carbonic acid Or Margarinic acid Or Margarinic acid 270 C17H34O2 20 Dodecanol Molecular weight: Molecular form: 186 C12H26O 21 ol,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12-trimethyl) 416 C28H48O2 C21H40O2 C101C C21H40O2 22 Oleic acid, Propyl ester 324 C21H40O2 C21H40O2 C21H40O2 C21H40O2	17	2,6,6-Trimethylcyclohex-2-ene-1,4-Dione	152	$C_9H_{12}O_2$	17	· ·	446	$C_{28}H_{46}O_{4}$
19 trans 240 C ₁₅ H ₂₈ O ₂ 19 Bicyclo(2,2,2)Octan-1-amine 125 C ₈ H ₁₅ N 20 Heptadecanoic acid Or Margaric acid Or Hexadecane carbonic acid Or Margarinic acid 270 C ₁₇ H ₃₄ O ₂ 20 Dodecanol Molecular weight: Molecular form: 186 C ₁₂ H ₂₆ O 21 ol,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl) 416 C ₂₈ H ₄₈ O ₂ 416 C ₂₁ H ₄₀ O ₂ 22 Oleic acid, Propyl ester 324 C ₂₁ H ₄₀ O ₂ 416 C ₂₁ H ₄₀ O ₂	18	3-(trans-2-hydroxy cyclohexyl) propanol	158	$C_9H_{18}O_2$	18	Decanoic acid or capric acid	172	$C_{10}H_{20}O_{2}$
20Hexadecane carbonic acid Or Margarinic acid270C17H34O220Dodecanol Molecular weight: Molecular form:186C12H26O8eta Tocopherol Or 2H-1-Benzopyran-6- 21 ol,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl)416C28H48O25555522Oleic acid, Propyl ester324C21H40O255555555	19		240	$C_{15}H_{28}O_{2}$	19	Bicyclo(2,2,2)octan-1-amine	125	$C_8^{}H_{15}^{}N$
21 ol,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12- trimethyl) 416 C28H48O2 22 Oleic acid, Propyl ester 324 C21H40O2	20	Hexadecane carbonic acid Or Margarinic	270	$C_{17}H_{34}O_{2}$	20		186	C ₁₂ H ₂₆ O
	21	ol,3,4-dihydro-2,5,8-trimethyl-2-(4,8,12-	416	C ₂₈ H ₄₈ O ₂				
	22	Oleic acid, Propyl ester	324	$C_{21}H_{40}O_{2}$				
	23		196					
Androstan-3-one,17-hydroxy-1,17- dimethyl-(1 alpha, 5 alpha, 17 beta) Or 17 beta,hydroxy-1alpha,17alpha dimethyl-5 alpha androstan-3-one 318 C ₂₁ H ₃₄ O ₂	24	dimethyl-(1 alpha, 5 alpha, 17 beta) Or 17 beta,hydroxy-1alpha,17alpha dimethyl-5	318	$C_{21}H_{34}O_{2}$				
25 $\frac{3-\text{beta}, 6 \text{ alpha}, 20 \text{ beta trihydroxy-5}}{\text{alpha-pregnane}}$ 336 $C_{21}H_{36}O_{3}$	25	3-beta, 6 alpha, 20 beta trihydroxy-5	336	C ₂₁ H ₃₆ O ₃				
26 Nonacosanol 424 C ₂₉ H ₆₀ O	26	Nonacosanol	424	C29H60O				

Table 1 The structure, molecular weight and molecular formula of 46 compounds from ethyl acetate and methylene chloride extracts when subjected to GLC M.S (gas liquid chromatographic mass spectrometry); 26 compounds at ethyl acetate extract and 20 compounds at methylene chloride extract.

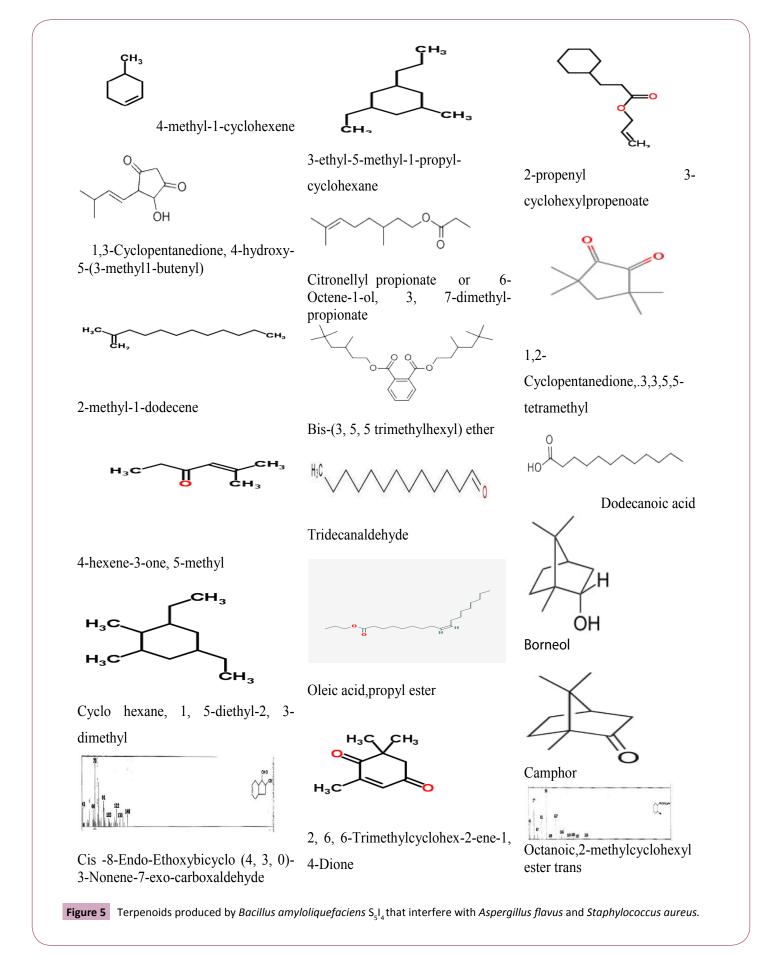

No: Number of compound; M.W: Molecular Weight

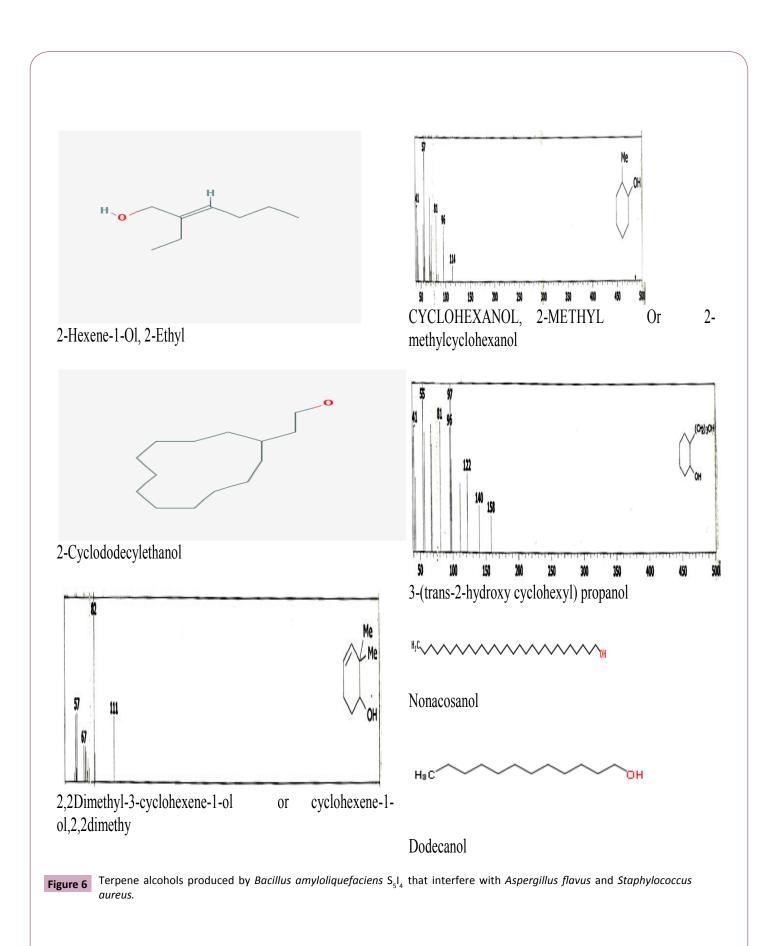

Bacillus species are good secretors of proteins and metabolites. Also *Bacillus* strains produce one of the most potent lipopeptide biosurfactants, surfactin which shows high surface activity and therapeutic potential [23,24].

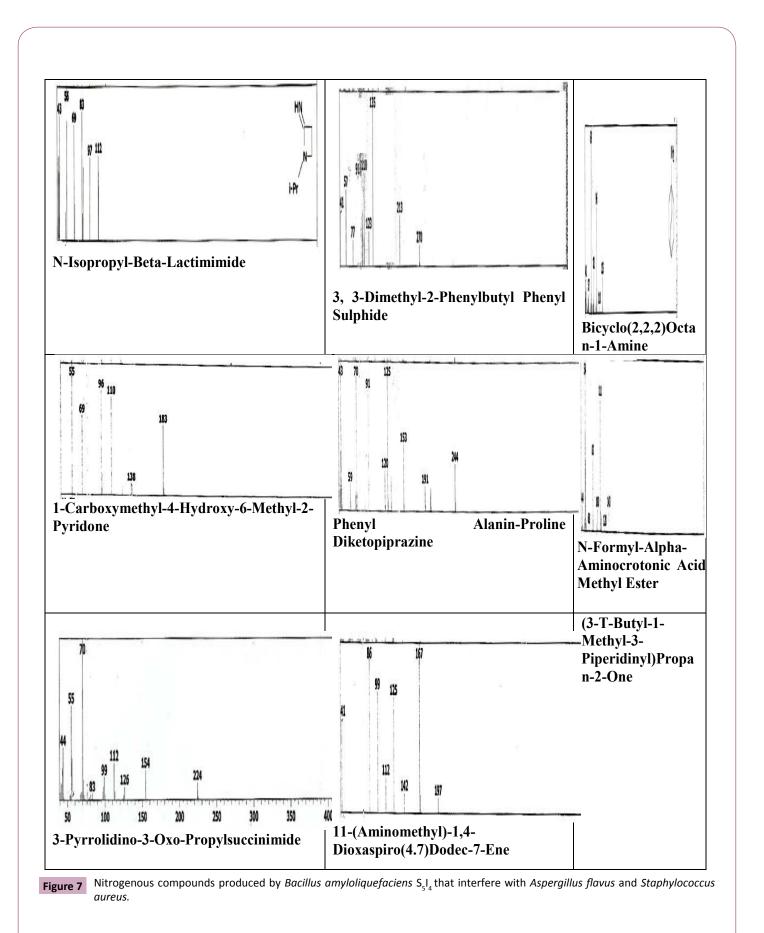
Production of antimicrobial substance(s) by members of Bacillus

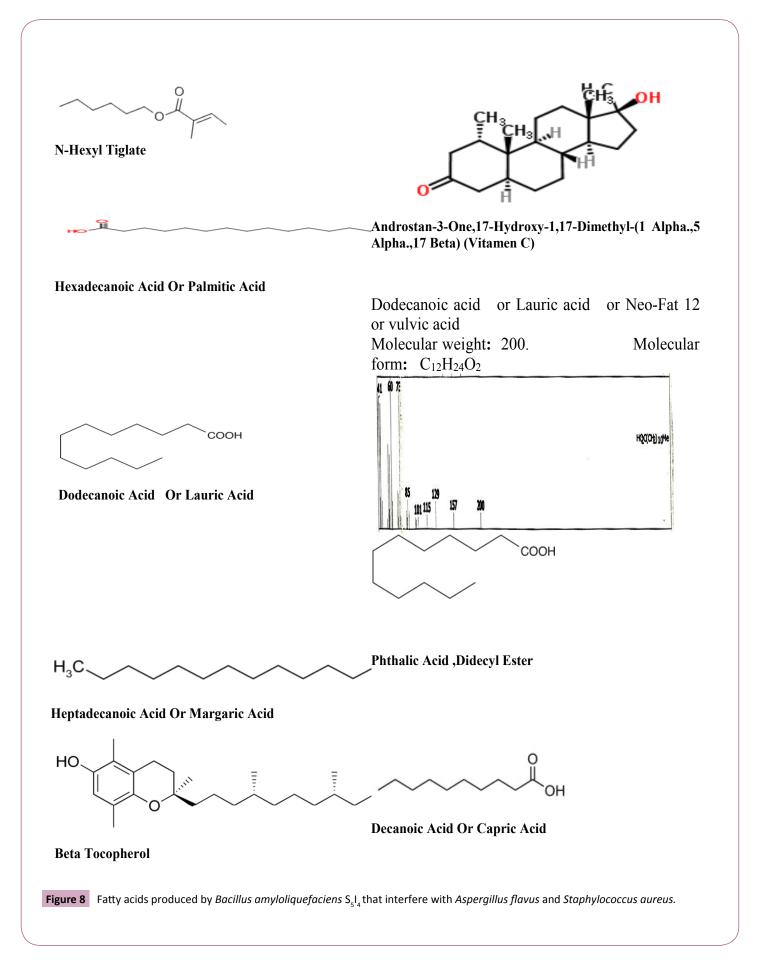
amyloliquefaciens was reported by many investigators. In this connection, Arguelles-Ariaset et al. [8] reported that *Bacillus amyloliquefaciens* GA1 as a good candidate for the development of biocontrol agents. The genome of the plant-associated *B. amyloliquefaciens* GA1 contained three gene clusters directing

2017 Vol.1 No.3:18


the synthesis of the antibacterial polyketides macrolactin, bacillaene and difficidin. Secondary metabolites produced by endophytic bacteria *Bacillus pumilus* MAIIIM4A showed a strong inhibitory activity against the fungi *Rhizoctonia solani*, *Pythium aphanidermatum* and *Sclerotium rolfsii* and LC-MS/MS was used to identify the active fraction assigned as punilacidin [25].


About 50.000 terpenoid metabolites have been isolated from terrestrial and marine plants, liverworts and fungi. However, rarely terpenoids metabolites have been identified in prokaryotes. The first study of bacterial terpenes reported in 1891 by Beithelot and Andre. Also, Gerber and Lechevalier [26] were carried out studies on bacterial terpenes production. GC-MS analysis showed that *Streptomyces avermitilis* ATCC 31267 produce terpenoid metabolites. The volatile compounds produced by *Bacillus atrophaeus* (CAB-1) include a range of amines and alkanamides, alcohols, phenols, hexadecane and O-anisaldehyde which inhibited fungal pathogen *Botrytis cinerea* [27].


Our results showed that *B. amyloliquefaciens* $S_{5}I_{4}$ and/ or its bioactive compounds may be used in the control of toxogenic fungi *A. flavus* MD 341. *Bacillus subtilis* and *Bacillus amyloliquefaciens* are well known for their biocontrol of fungal and bacterial diseases. The main mechanisms known to be involved in biocontrol include antibiosis, competition, growth promotion and induction of systemically acquired resistance [28]. Antibiotics are powerful weapons used by biocontrol strains to compete with other microorganisms [29].


 Table 2 Classification and identification of extracted antimicrobial compounds produced by B. amyloliquefaciens S5I4 strain using gas liquid chromatographic mass spectrometry (GC-MS).

Type of Compound Number of Compound	Terpenoids	Terpene Alcohols	Nitrogenous compounds	Fatty acids	
1	Cyclo4-Methyl Or 4-Methyl Cyclohexene	2-Hexene-1-Ol, 2-Ethyl	N-Isopropyl-Beta- Lactimimide	N-Hexyl Tiglate	
2	2-Methyl-1-Dodecene	2-CyclododecylEthanol	(3-T-Butyl-1-Methyl-3- Piperidinyl)Propan-2-One	Hexadecanoic Acid Or Palmitic Acid	
3	4-Hexene-3-One, 5-Methyl	2,2Dimethyl-3-Cyclohexene-1-Ol	3, 3-Dimethyl-2- Phenylbutyl Phenyl Sulphide	Dodecanoic Acid Or Lauric Acid	
4	3-Ethyl-5-Methyl-1-Propyl- Cyclohexane	Cyclohexanol, 2-Methyl	11-(Aminomethyl)-1,4- Dioxaspiro(4.7)Dodec- 7-Ene	Heptadecanoic Acid Or Margaric Acid	
5	Bis-(3,5,5-Trimethylhexyl) Ether	3-(Trans-2-Hydroxy Cyclohexyl) Propanol	N-Formyl-Alpha- Aminocrotonic Acid Methyl Ester	Beta Tocopherol	
6	Tridecanaldehyde	Nonacosanol	1-Carboxymethyl-4- Hydroxy-6-Methyl-2- Pyridone	Androstan-3-One,17- Hydroxy-1,17-Dimethyl-(1 Alpha.,5 Alpha.,17 Beta) (Vitamen C)	
7	Cyclohexane,1,5-Diethyl-2, 3-Dimethyl	Dodecanol	3-Pyrrolidino-3-Oxo- Propylsuccinimide	3-Beta, 6 Alpha, 20 Beta Trihydroxy-5 Alpha- Pregnane (Hormone)	
8	Citronellyl Propionate		Phenyl Alanin-Proline Diketopiprazine	Decanoic Acid Or Capric Acid	
9	2,6,6-Trimethylcyclohex-2-Ene-1,4- Dione		Bicyclo(2,2,2)Octan-1- Amine	Phthalic Acid ,Didecyl Ester	
10	Octanoic Acid, 2-Methylcyclohexyl Ester,Trans			Decanoic Acid Or Capric Acid	
11	Oleic Acid, Propyl Ester				
12	2-Propenyl 3-Cyclohexylpropenoate				
	3,3,5,5-Tetramethyl,1,2-Cyclopentane Dodecanoic Acid				
14 15	Borneol				
16	Camphor				
17	Octanoic, 2-Methylcyclohexyl Ester Trans				
18	1,3-Cyclopentanedione, 4-Hydroxy-5- (3-Methyl1-Butenyl)				
19	Cis-8-Endo-Ethoxybicyclo (4,3,0)-3-Nonene-7-Exo- Carboxaldehyde				
	19	7	9	10+Miscellaneous=Menthyl- beta-D-glucopyranoside	
	41.30	15.22	19.57	21.74+2.17	

Conclusion

The identification of new bioactive compound with broad activity is very important to inhibit or kill the antibiotic resistance bacteria. The extraction and identification of the pure effective bioactive compounds from *B. amyloliquefaciens* strain as; terpenoids and

References

- Melin P, Sundh I, Håkansson S, Schnürer J (2007) Biological preservation of plant derived animal feed with anti-fungal microorganisms: Safety and formulation aspects. Biotechnol Lett 29:1147–1154.
- Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16: 497-516.
- 3 Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121: 123-138.
- 4 Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63: 541-556.
- 5 Yang Z, Guo H, Zhang X (2008) Study on the control of peach postharvest diseases using *Bacillus subtilis*. China Fruits 23: 35-38.
- 6 Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43: 337-359.
- 7 Timmusk S. Grantcharova N, Wanger EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71: 7292-7300.
- 8 Arguelles-Arias A, Ongena M. Halimi B. Lara, Y, Brans A, et al. (2009) *Bacillus amyloliquefaciens* GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8: 63.
- 9 Artidtaya B, Sasiphimol S, Sirirath S, Wiyada M (2012) Characterization of endophytic bacteria, *Bacillus amyloliquefaciens* for antimicrobial agents production. International Conference on Biological and Life Sciences IPCBEE, IACSIT Press, Singapore.
- 10 Nastro RA, Di Costanzo A, Gesuele R (2011) Influence of temperature on the production of antibiotic molecules in *Bacillus amyloliquefaciens* strain HNA3. Science against Microbial Pathogens 1307-1310.
- 11 Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: Surviving and thriving in the microbial jungle. Nat Rev Microbiol 8: 15-25.
- 12 Reda FM, Abdel-Shafi S, Ismail M (2016) Efficient inhibition of some multi-drug resistant pathogenic bacteria by bioactive metabolites from *Bacillus amyloliquefaciens* S₅I₄ isolated from archaeological soil in Egypt. Appl Biochem Microbiol 6: 593-601.
- 13 Balhara M, Ruhil S, Dhankhar S, Chhillar AK (2011) Bioactive compounds hold up- *Bacillus amyloliquefaciens* as a potent biocontrol agent. Nat Prod J 1: 20-28.
- 14 El-Shirbiny EAA (1990) Studies on the antimicrobial activities of some bacteria belonging to Actinomycetales. Ph.D. Thesis. Bot. Department, Zagazig Univ. Egypt.

alcohol terpenes were reported here in which previously known from essential oils. These compounds could be utilized both to make best use of their antibacterial and antifungal activities and to reduce the growth of pathogen required to achieve a particular antibacterial effect for food safety and health purposes. Also, required to achieve inhibition to pathogenic fungi, e.g. *A. flavus*.a

- 15 Kuester E, Williams St (1964) Selection of media for isolation of streptomycetes. Nature 202: 928-929.
- 16 Le LY, Baron F, Gautier M (2003) *Staphylococcus aureus* and food poisoning. Genet Mol Res 2: 63-76.
- 17 Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor.
- 18 Agrios GN (2005) Plant pathology, 5th ed, Elsevier Academic Press, Oxford, UK.
- 19 Yuncheng W, Jun Y, Waseem R, Qirong S, Qiwei, H (2014) Biocontrol traits and antagonistic potential of *Bacillus amyloliquefaciens* strain NJZJSB3 against *Sclerotinia sclerotiorum*, a causal agent of canola stem rot. J Microbiol Biotechnol 24: 1327–1336.
- 20 Zengin H, Baysal AH (2014) Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19: 17773-17798.
- 21 Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of *Bacillus amyloliquefaciens* NJN-6 volatile compounds against *Fusarium oxysporium* f. sp. cubense. Appl Envirozn Microbiol 78:5942-5944.
- 22 Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibits mycelia growth of the plant pathogen *Rhizoctonia solani*. Arch Microbiol 187: 351-360.
- 23 Besson F, Michel G (1992) Biosynthesis of iturin and surfactin by *Bacillus subtilis*: Evidence for amino acid activating enzymes. Biotechnol Lett 14: 1013-1018.
- 24 Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51: 553-563.
- 25 Pereira FM, Fiore MF, Beraldo MLA, Silva-Stenico ME, Scramin S, et al. (2009) Antifungal compound produced by the cassava endophyte *Bacillus pumilus* MAIIIM4A. Sci Agric 66: 583-592.
- 26 Gerber NN, Lechevalier HA (1965) Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol 13: 935-938.
- 27 Zhang X, Li B, Wang Y (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent *Bacillus atrophaeus* CAB-1. Appl Microbiol Biotechnol 97: 9525-9534.
- 28 Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164.
- 29 Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16: 115-125.