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ABSTRACT   
 
In order to understand the essential structural features for COX (Cyclooxygenase) inhibitors, 
three-dimensional pharmacophore hypothesis were built on the basis of a set of known COX 
inhibitors selected from literature using PHASE program. Four point pharmacophore with one 
hydrogen bond acceptor (A), three aromatic rings (R) as pharmacophoric features were 
developed. Amongst them the pharmacophore hypothesis ARRR14 yielded a statistically 
significant 3D-QSAR model with 0.811 as R2 value and was considered to be the best 
pharmacophore hypothesis. The developed pharmacophore model was externally validated by 
predicting the activity of test set molecules. The squared predictive correlation coefficient of 0.96 
was observed between experimental and predicted activity values of test set molecules.   
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INTRODUCTION 
 

NSAIDs are widely used in the treatment of rheumatoid arthritis and inflammatory diseases. 
However, long term use of NSAIDs has been associated with gastrointestinal bleeding and 
nephrotoxicity [1]. Anti-inflammatory activity of Non-steroidal anti-inflammatory drugs 
(NSAIDs) is mediated by inhibition of Cyclo-Oxygenases which results in decrease production 
of prostanoids. This mechanism is believed to account for both therapeutic as well as adverse 
effects of NSAIDs. Two forms of COXs have been identified - COX-I & COX-II. While COX-I 
is expressed in most of body tissues, COX-II is present with low or undetectable levels in some 
tissues [2]. The first COX-II selective compounds were DUP697 [3] and NS398 [4]. Later on 
DUP697 was used as starting point for the synthesis of the diaryl heterocyclic family of selective 
inhibitors, which include celecoxib [5, 6] and rofecoxib [7]. The central channel of COX-II is 
larger than that of COX-I. the larger main channel and extra nook make the total binding site ˜ 

25% larger in COX-II than in COX-I. The extra size is essential for selective inhibition of COX-
II. [8, 9]. The butenolide ring present in cardenolides shows a strong oral cardiotonic activity. 
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Butenolides is also reported to have anti-inflammatory, analgesic, antiviral, and anticancer 
properties [10-12]. 
 
The pharmacophore modeling is a well established approach to quantitatively explore common 
chemical features among a considerable number of structures and qualified pharmacophore 
model could also be used as a query for searching chemical databases to find new chemical 
entities. Pharmacophore modeling correlates activities with the spatial arrangement of various 
chemical features [13].  
 
Ligand-based drug design approaches like pharmacophore mapping [14] and quantitative 
structure-activity relationship [15,16] can be used in drug discovery in several ways, e.g. 
rationalization of activity trends in molecules under study, prediction of the activity of novel 
compounds, database search studies in search of new hits and to identify important features for 
activity.  
 
This paper describes the development of a robust ligand-based 3D-pharmacophore hypothesis. 
The pharmacophore hypothesis obtained from the pharmacophoric points is used to derive 
pharmacophore-based 3D-QSAR model. Such a pharmacophore model provides a rational 
hypothetical picture of primary chemical features responsible for activity [17]. A further 
important role is to develop QSAR model.  
 

MATERIALS AND METHODS 
 

Dataset  
The in vitro biological data [18] of a series of 20 compounds having anti-inflammatory activity 
was used for the present studies. The anti-inflammatory activity was expressed as % inhibition. . 
The dataset was divided randomly into training set and test set by considering the 75% of the 
total molecules in the training set and 25% in the test set. Fifteen molecules forming the training 
set were used to generate pharmocophore models and prediction of the activity of test set (5 
analogues) molecules was used as a method to validate the proposed model. 
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O  
 

Figure 1: Basic structure of butenolides 
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Table I: Experimental inhibitory activity of compounds  
TRAINING SET 

S.NO Ar ACTIVITY PREDICTED ACTIVITY FITNESS SCORE 

1 
Br 

43.01 43.96 3 

2 
CH3 

44.08 42.53 2.49 

3 
F 

47.31 44.34 2.96 

4 
N

+

O
-

O

 

35.48 32.93 2.02 

5 
O

CH3
 

47.31 48.13 2.47 

6 

 

43.01 43.74 2.47 

NH

O

 Ar

 
 

7 
Br 

36.55 32.91 2.91 

8 
Cl 

29.03 31.02 2.44 

9 
Cl 

29.03 33.24 2.88 

10 

N
+O

-
O

 

38.70 35.55 2.72 

11 
CH3 

30.10 30.87 2.43 
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N

O

 Ar

 
 

12 
Cl 

41.93 39.55 2.16 

13 
CH3 

35.48 38.78 2.15 

14 
Br 

39.78 39.34 2.16 

15 N
CH3

CH3

 

36.55 40.46 2.15 

 
Test set 

O  Ar

O  
 

1 
Cl 

43.01 43.82 2.98 

2 
F F

F  

47.31 42.76 2.47 

3 

N
+O

-
O

 

40.86 44.84 2.84 
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4 N
CH3

CH3

 

35.48 45.39 2.93 

 

N

O

 Ar

 
 

5 
O

CH3
 

51.6 41.36 2.16 

 
Pharmacophore modeling  
Pharmacophore modeling and 3-D database searching are now recognized as integral 
components of lead discovery and lead optimization. The continuing need for improved 
pharmacophore based tools has driven the development of ‘PHASE’ [19]. To reach our research 
objectives we have used ‘PHASE’ a module of Schrödinger's software program ‘MAESTRO’ 
[20]. 
 
Ligand Preparation 
The first step for pharmacophore modeling studies was ligand preparation. The chemical 
structures of all the compounds were drawn in maestro and geometrically refined using Ligprep 
module [21]. LigPrep is a robust collection of tools designed to prepare high quality, all-atom 3D 
structures for large numbers of drug-like molecules, starting with the 2D or 3D structures in SD 
or Maestro format. The simplest use of LigPrep produces a single, low-energy, 3D structure with 
correct chiralities for each successfully proposed input structure. While performing this step, 
chiralities were determined from 3D structure and original states of ionization were retained. 
Tautomers were generated using MacroModel method discarding current conformers. The 
conformations were generated by the Monte Carlo (MCMM) [22, 23] method as implemented in 
MacroModel version 9.6 using a maximum of 2,000 steps with a distance-dependent dielectric 
solvent model and an OPLS-2005 force field. All the conformers were subsequently minimized 
using truncated Newton conjugate gradient (TNCG) minimization up to 500 iterations. For each 
molecule, a set of conformers with a maximum energy difference of 30 kcal/mol relative to the 
global energy minimum conformer was retained. The conformational searches were done for 
aqueous solution using the generalized born/solvent accessible surface (GB/SA) continuum 
solvation model [24]. 
 
Creation of Pharmacophoric Sites 
The next second step in developing a pharmacophore model is to use a set of pharmacophore 
features to create pharmacophore sites (site points) for all the ligands. In the present study, an 
initial analysis revealed that three chemical feature types i.e., hydrogen-bond acceptor (A), 
hydrophobic group (H) and aromatic ring (R) could effectively map all critical chemical features 
of all molecules in the data set. The minimum and maximum sites for all the features were kept 3 
and 5 respectively. These features were selected and used to build a series of hypothesis with the 
find common pharmacophore option in Phase. 
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Searching Common Pharmacophore 
In this step, pharmacophores from all conformations of the ligands in the data set were examined 
and those pharmacophores that contain identical sets of features with very similar spatial 
arrangements were grouped together. If a given group is found to contain at least one 
pharmacophore from each ligand, then this group gives rise to a common pharmacophore. Any 
single pharmacophore in the group could ultimately become a common pharmacophore 
hypothesis. Common pharmacophores are identified using a tree-based partitioning technique 
that groups together similar pharmacophores according to their intersite distances, i.e., the 
distances between pairs of sites in the pharmacophore.  
 
Scoring Hypothesis 
In this step, common pharmacophore hypothesis were examined using a scoring function to yield 
the best alignment of the active ligands using an overall maximum root mean square deviation 
(RMSD) value of 1.2 Å for distance tolerance. The quality of alignment was measured by 
survival score [25]. 
 
Generation of 3D-QSAR Model 
Phase provides the means to build 3D QSAR models for a set of ligands that are aligned to a 
selected hypothesis. The Phase 3D QSAR model partitions the space occupied by the ligands 
into a cubic grid. Any structural component can occupy part of one or more cubes. A cube is 
occupied by a feature if its centroid is within the radius of the feature. We can set the size of the 
cubes by changing the value in the Grid spacing text box. The regression is done by constructing 
a series of models with an increasing number of PLS factors. In present case, the pharmacophore 
based model was generated by keeping 1Å grid spacing and 2 as maximum number of PLS 
factors.  
 
Validation of Pharmacophore Model   
Validation is a crucial aspect of pharmacophore design, particularly when the model is built for 
the purpose of predicting activities of compounds in external test series [26]. External validation 
is considered to be a conclusive proof for judging predictability of a model. Our priority was to 
develop QSAR models that were statistically robust both internally as well as externally. The 
main target of any QSAR modeling is that the developed model should be robust enough to be 
capable of making accurate and reliable predictions of biological activities of new compounds. In 
the present case, the developed pharmacophore model was validated by predicting the activity of 
test set molecules and correlation between the experimental and predicted activities of the test set 
molecules was determined. 
 

RESULTS AND DISCUSSION 
 

The purpose of pharmacophore modeling is to perform in silico screening searches in a three 
dimensional database of a virtual or real compound library to find diverse structures with desired 
binding activity and selectivity [27]. In the present study, a series of butenolides was considered 
for molecular modeling studies. The studies were aimed at developing a ligand based 
pharmacophore model relating the anti-inflammatory of butenolides . 
 
Fifteen molecules forming the training set were used to develop the pharmacophores. The 
pharmacophoric features selected for creating sites were hydrogen bond acceptor (A), three 
aromatic rings (R). Pharmacophore models containing three, four and five sites, i.e., features 
were generated. The three featured pharmacophore hypotheses was rejected due to low value of 
survival score, as they were unable to define the complete binding space of the selected 
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molecules. Five featured pharmacophore hypothesis was also rejected due to non-availability of 
common pharmacophore. 
 
The results of four featured pharmacophore hypothesis, labelled ARRR14. The hypothesis 
ARRR14 is the best hypothesis in this study, characterized by highest survival score. The 
ARRR14 pharmacophore hypothesis is presented in Figure II. The features represented by this 
hypothesis are one hydrogen bond acceptor (A), three aromatic rings (R). The angles and 
distances between different sites of ARRR14 are given in Table III and IV respectively.  
 

Table II: Parameters of best pharmacophore hypothesis 
 

 
 
 
 
 

  
 

Figure II: PHASE generated pharmacophore model ARRR14 illustrating hydrogen bond acceptor (A2; 
pink), aromatic rings (R4; R5; R6; orange) . 

 
Table III: Angles between different pharmacophoric sites of model ARRR14 

 
Site1 Site2 Site3 Angle 
R4 A2 R5 13.1 
R4 A2 R6 127.5 
R5 A2 R6 140.6 
A2 R4 R6 132.6 
A2 R4 R6 20.1 
R5 R4 R6 152.6 
A2 R5 R4 34.3 
A2 R5 R6 12.7 
R4 R5 R6 21.7 
A2 R6 R4 32.5 
A2 R6 R5 26.7 
R4 R6 R5 5.8 

S. No. Hypothesis Survival Score R2 F 
1 ARRR14 3.543 0.8114 25.8 
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Table IV: Distances between different pharmacophoric sites of model ARRR14 
 

Site1 Site2 Distance 
A2 R4 6.070 
A2 R5 7.931 
A2 R6 3.877 
R4 R5 2.445 
R4 R6 8.973 
R5 R6 11.200 

 
For each ligand, one aligned conformer based on the lowest RMSE of feature atom coordinates 
from those of the corresponding reference feature was superimposed on hypothesis. Then fitness 
scores for all ligands were observed on the best scored pharmacophore model. The greater the 
fitness score, the greater the activity prediction of the compound. The fit function does not only 
check if the feature is mapped or not, it also contains a distance term, which measures the 
distance that separates the feature on the molecule from the centroid of the hypothesis feature. 
Figure III shows the ARRR14 aligned with the most active compound 1 (max.fitness score=3) of 
the training set.  
 

 
Figure III: Best pharmacophore model ARRR14 aligned with the most active compound 1 (maximum fitness 
score = 3) of the training set. Pharmacophore features are color coded: hydrogen bond acceptor (A2; pink), 

aromatic rings (R4; R5; R6 (orange). 
 
Besides this survival score analysis, the validity and predictive character ARRR14 were further 
assessed by predicting the activity of test set molecules. A test set having five molecules was 
analyzed. All the test set molecules were built and minimized as well as used in conformational 
analysis like all training set molecules. Then the activities of test set molecules were predicted 
using ARRR14 and compared with the actual activity. Actual and predicted activity values of 
training & test set molecules are given in Table V, VI respectively. The predicted anti-
inflammatory activity exhibited a correlation of 0.96 using model ARRR14 (Figure V). For a 
reliable model, the squared predictive correlation coefficient should be >0.60 [28, 29]. The 
results of this study reveal that model ARRR14 can be used for the prediction of anti-
inflammatory activity. Good and consistent external predictivity was observed for ARRR14 as 
compared to the other hypothesis. ARRR14 showed a good r2 value, i.e. 0.811 and squared 
predictive correlation coefficient of 0.960 was also observed between experimental and predicted 
activity values of test set molecules.  
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Table V: Experimental and predicted activity of training molecules based on hypothesis ARRR14 
 

S.NO Experimental activity  
(% inhibition) 

Predicted activity  
(% inhibition) 

1 43.01 43.96 
2 44.08 42.53 
3 47.31 44.34 
4 35.48 32.93 
5 47.31 48.13 
6 43.01 43.74 
7 36.55 32.91 
8 29.03 31.02 
9 29.03 33.24 
10 38.70 35.55 
11 30.10 30.87 
12 41.93 39.55 
13 35.48 38.78 
14 39.78 39.34 
15 36.55 40.46 

 

 . 
 

Figure IV: Relation between experimental and predicted anti-inflammatory activity of training set molecules 
using model ARRR14 

 
Table VI: Experimental and predicted activity of test molecules based on hypothesis ARRR14 

 
 
 
 
 
 
 

 
 

 

R² = 0.811
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S. No. 
Experimental activity 

 (%inhibition) 

Predicted activity  
(%inhibition) 

1 43.01 43.82 
2 47.31 42.76 
3 40.86 44.84 
4 35.48 45.39 
5 51.6 41.36 
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Figure V: Relation between experimental and predicted anti-inflammatory activity of test set molecules using 
model ARRR14 

 
Interpretation of QSAR model 
Additional insights into the inhibitory activity can be gained by visualizing the QSAR model in 
the context of one or more ligands in the series with varying activity. This information can then 
be used to design new and more active analogues. A pictorial representation of the 3D QSAR 
models based on compound 1 of the training set using hydrogen bond acceptor and 
hydrophobicity features is shown in Fig VI-VII. In these representations, the blue cubes indicate 
favorable regions while red cubes indicate unfavorable regions for activity. 

 

 
   

FigureVI: 3D QSAR model based on compound 1 of the training set illustrating hydrogen bond acceptor 
features 

 
. Figure VI shows the 3D QSAR model illustrating the hydrogen bond acceptor feature. The blue 
region at the site of butenolide moiety shows any substitution by hydrogen bond acceptor in this 
region causes increase in activity. 
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Figure VII: 3D QSAR model based on compound 1 of the training set illustrating  hydrophobic  features 
 
The blue region around naphthalene shows any group attached to naphthalene which increases 
hydrophobicity increases the activity. Red region at 4 position (bromo) of benzene ring shows 
that any hydrophobic group at this position cause decrease in activity. 
 
The studies show the generation of a pharmacophore model ARRR14 for butenolides  acting as 
COX inhibitors. Pharmacophore modeling correlates activities with the spatial arrangement of 
various chemical features. Hypothesis ARRR14 represents the best pharmacophore model for 
determining anti-inflammatory activity. ARRR14 consists of one hydrogen bond acceptor, three 
aromatic ring features. This pharmacophore model was able to accurately predict anti-
inflammatory activity and the validation results also provide additional confidence in the 
proposed pharmacophore model. 
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