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ABSTRACT

In order to understand the essential structural features for COX (Cyclooxygenase) inhibitors,
three-dimensional pharmacophore hypothesis were built on the basis of a set of known COX
inhibitors selected from literature using PHASE program. Four point pharmacophore with one
hydrogen bond acceptor (A), three aromatic rings (R) as pharmacophoric features were
developed. Amongst them the pharmacophore hypothesis ARRR14 yielded a statistically
significant 3D-QSAR model with 0.811 as R® value and was considered to be the best
pharmacophore hypothesis. The developed pharmacophore model was externally validated by
predicting the activity of test set molecules. The squared predictive correlation coefficient of 0.96
was observed between experimental and predicted activity values of test set molecules.
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INTRODUCTION

NSAIDs are widely used in the treatment of rheundagrthritis and inflammatory diseases.
However, long term use of NSAIDs has been assatiat¢h gastrointestinal bleeding and
nephrotoxicity [1]. Anti-inflammatory activity of bh-steroidal anti-inflammatory drugs
(NSAIDs) is mediated by inhibition of Cyclo-Oxygeses which results in decrease production
of prostanoids. This mechanism is believed to actéor both therapeutic as well as adverse
effects of NSAIDs. Two forms of COXs have been itfesd - COX-1 & COX-IIl. While COX-I

is expressed in most of body tissues, COX-Il isent with low or undetectable levels in some
tissues [2]. The first COX-Il selective compoundsrev DUP697 [3] and NS398 [4]. Later on
DUP697 was used as starting point for the syntheddise diaryl heterocyclic family of selective
inhibitors, which include celecoxib [5, 6] and roéxib [7]. The central channel of COX-II is
larger than that of COX-I. the larger main charnsatl extra nook make the total binding site
25% larger in COX-II than in COX-I. The extra sigeessential for selective inhibition of COX-
Il. [8, 9]. The butenolide ring present in cardedes shows a strong oral cardiotonic activity.

241
Pelagia Research Library



Sukhbir L. Khokraet al Der Pharmacia Sinica, 2011, 2(4):241-252

Butenolides is also reported to have anti-inflamongt analgesic, antiviral, and anticancer
properties [10-12].

The pharmacophore modeling is a well establishgutomeh to quantitatively explore common
chemical features among a considerable numberrattates and qualified pharmacophore
model could also be used as a query for searcthegnical databases to find new chemical
entities. Pharmacophore modeling correlates aesvivith the spatial arrangement of various
chemical features [13].

Ligand-based drug design approaches like pharmacepmapping [14] and quantitative
structure-activity relationship [15,16] can be udeddrug discovery in several ways, e.g.
rationalization of activity trends in molecules endstudy, prediction of the activity of novel
compounds, database search studies in search offiteeand to identify important features for
activity.

This paper describes the development of a robgahdi-based 3D-pharmacophore hypothesis.
The pharmacophore hypothesis obtained from thenpd@sphoric points is used to derive
pharmacophore-based 3D-QSAR modsuch a pharmacophore model provides a rational
hypothetical picture of primary chemical featuressponsible for activity [17]. A further
important role is to develop QSAR model.

MATERIALSAND METHODS

Dataset

Thein vitro biological data [18] of a series of 20 compoundsiihg anti-inflammatory activity
was used for the present studies. The anti-inflaramaactivity was expressed as % inhibition. .
The dataset was divided randomly into trainingas&l test set by considering the 75% of the
total molecules in the training set and 25% inttdst set. Fifteen molecules forming the training
set were used to generate pharmocophore modelgradéttion of the activity of test set (5
analogues) molecules was used as a method to teatltaproposed model.
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Figure 1. Basic structure of butenolides
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Tablel: Experimental inhibitory activity of compounds

TRAINING SET
SNO Ar ACTIVITY | PREDICTED ACTIVITY | FITNESS SCORE
1 \©\ 43.01 43.96 3
Br
2 \©\ 44.08 4253 2.49
CH,
3 \©\ 4731 44.34 2.96
F
4 \©\N+o 35.48 32.93 2.02
| -
o)
5 \©\ cHy 4731 48.13 2.47
o
6 ©\ 43.01 43.74 2.47
/
NH { Ar
o)
7 \©\ 36.55| 32.91 2.91
Br
8 \©\ 20.03| 31.02 2.44
cl
9 \©\ 29.03| 33.24 2.84
cl
O. +O
3N
10 \© 38.70| 3555 2.7
11 \©\ 30.10| 30.87 2.43
CH4
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12 \©\ 41.93| 39.55 2.14
Cl

13 \©\ 35.48| 38.78 2.1%
CH,

14 \©\ 39.78| 39.34 2.14
Br

15 \©\ -CH3 | 36.55| 40.46 2.1%

1 \©\ 43.01| 43.82 2.9
cl
2 47.31| 42.76 2.47
F——F
F
O: +O
3 \© 40.86| 44.84 2.84
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4 \©\N/CH3 35.48| 4539 2.9
|
CHs
(0]
5 \©\O/CH3 51.6| 41.36| 2.16

Phar macophore modeling

Pharmacophore modeling and 3-D database searchiegnew recognized as integral
components of lead discovery and lead optimizatibhe continuing need for improved
pharmacophore based tools has driven the develdpphdPHASE’ [19]. To reach our research
objectives we have used ‘PHASE’ a module of Scim@eli's software program ‘MAESTRO’
[20].

Ligand Preparation

The first step for pharmacophore modeling studiess ligand preparation. The chemical
structures of all the compounds were drawn in nmaestdgeometrically refined using Ligprep
module [21].LigPrep is a robust collection of tools designed to pregagé quality, all-atom 3D
structures for large numbers of drug-like molecugtarting with the 2D or 3D structures in SD
or Maestro format. The simplest use of LigPrep poas a single, low-energy, 3D structure with
correct chiralities for each successfully proposgult structure. While performing this step,
chiralities were determined from 3D structure amigjinal states of ionization were retained.
Tautomers were generated using MacroModel methaedadiing current conformers. The
conformations were generated by lente Carlo (MCMM)[22, 23] methodas implemented in
MacroModel version 9.@ising a maximum of 2,000 steps with a distancedéent dielectric
solvent model and an OPLS-2005 force field. All domformers were subsequently minimized
using truncated Newton conjugate gradi@CG) minimization up to 500 iterations. For each
molecule, a set of conformers with a maximum eneliffgrence of 30 kcal/mol relative to the
global energy minimum conformer was retain@tie conformational searches were done for
aqueous solution using the generalized born/solaecessible surface (GB/SA) continuum
solvation model [24].

Creation of Pharmacophoric Stes

The next second step in developing a pharmacopiocel is to use a set of pharmacophore
features to create pharmacophore sites (site pdmtsll the ligands. In the present study, an
initial analysis revealed that three chemical feattypes i.e., hydrogen-bond acceptor (A),
hydrophobic group (H) and aromatic ring (Rutd effectively map all critical chemical features
of all molecules in the data set. The minimum arimum sites for all the features were kept 3
and 5 respectively. These features were seleckdised to build a series of hypothesis with the
find common pharmacophore option in Phase.
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Searching Common Phar macophore

In this step, pharmacophores from all conformatiointhe ligands in the data set were examined
and those pharmacophores that contain identical sktfeatures with very similar spatial
arrangements were grouped together. If a given pyrisu found to contain at least one
pharmacophore from each ligand, then this groupgyise to a common pharmacophore. Any
single pharmacophore in the group could ultimategcome a common pharmacophore
hypothesis. Common pharmacophores are identifiéayus tree-based partitioning technique
that groups together similar pharmacophores aaogrdd their intersite distances, i.e., the
distances between pairs of sites in the pharmaceepho

Scoring Hypothesis

In this step, common pharmacophore hypothesis weaminedusing a scoring function to yield
the best alignment of the active ligangsng an overall maximum root mean square deviation
(RMSD) value of 1.2 A for distance tolerancEhe quality of alignment was measured by
survival score25].

Generation of 3D-QSAR Model

Phase provides the means to build 3D QSAR modela feet of ligands that are aligned to a
selected hypothesiThe Phase 3D QSAR model partitions the space oedupy the ligands
into a cubic grid. Any structural component canumc part of one or more cubes. A cube is
occupied by a feature if its centroid is within tlaglius of the feature. We can set the size of the
cubes by changing the value in the Grid spacingliex. The regression is done by constructing
a series of models with an increasing number of Rlc®rs. In present case, the pharmacophore
based model was generated by keeping 1A grid spaaitl 2 as maximum number of PLS
factors.

Validation of Pharmacophore Model

Validation is a crucial aspect of pharmacophoragiegarticularly when the model is built for
the purpose of predicting activities of compoundgxternal test series [26]. External validation
is considered to be a conclusive proof for judgangdictability of a model. Our priority was to
develop QSAR models that were statistically rokdusth internally as well as externally. The
main target of any QSAR modeling is that the degwetbmodel should be robust enough to be
capable of making accurate and reliable predictadrisological activities of new compounds. In
the present case, the developed pharmacophore madelalidated by predicting the activity of
test set molecules and correlation between therempptal and predicted activities of the test set
molecules was determined.

RESULTSAND DISCUSSION

The purpose of pharmacophore modeling is to perfiorsilico screening searches in a three
dimensional database of a virtual or real compdibrdry to find diverse structures with desired
binding activity and selectivity [27]. In the pregestudy, a series of butenolides was considered
for molecular modeling studies. The studies wermed at developing a ligand based
pharmacophore model relating the anti-inflammatdrigutenolides .

Fifteen molecules forming the training set wereduse develop the pharmacophores. The
pharmacophoric features selected for creating sitere hydrogen bond acceptor (A), three
aromatic rings (R)Pharmacophore models containing three, four ang dites, i.e., features
were generated. The three featured pharmacophp@heses was rejected due to low value of
survival score as they were unable to define the complete bgqhdipace of the selected
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molecules. Five featured pharmacophore hypotheassalso rejected due to non-availability of

common pharmacophore.

The results of four featured pharmacophore hyp@thdabelled ARRR14. The hypothesis
ARRR14 is the best hypothesis in this study, chiaremed by highest survival score. The
ARRR14 pharmacophore hypothesis is presented ar&ifi. The features represented by this
hypothesis are one hydrogen bond acceptor (A)etl®matic rings (R). The angles and

distances between different sites of ARRR14 arergin Table Il and IV respectively.

Tablell: Parametersof best phar macophor e hypothesis

S. No.

Hypothesis

Survival Score

1

ARRR14

3.543 0.8114 25)8

Figurell: PHASE generated phar macophore model ARRR14 illustrating hydr ogen bond acceptor (A2;
pink), aromatic rings (R4; R5; R6; orange) .

Tablelll: Anglesbetween different phar macophoric sites of model ARRR14

D

Sitel| Site2| Site3 Angle
R4 A2 R5 13.1
R4 A2 R6 | 127.5
R5 A2 R6 | 140.6
A2 R4 R6 | 132.6
A2 R4 R6 20.1
R5 R4 R6 | 152.6
A2 R5 R4 34.3
A2 R5 R6 12.7
R4 R5 R6 21.7
A2 R6 R4 32.5
A2 R6 R5 26.7
R4 R6 R5 5.8
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Table 1V: Distances between different phar macophoric sites of model ARRR14

Sitel| Site2| Distance
A2 R4 6.070
A2 R5 7.931
A2 R6 3.877
R4 R5 2.445
R4 R6 8.973
R5 R6 11.200

For each ligand, one aligned conformer based orotiest RMSE of feature atom coordinates
from those of the corresponding reference featwas superimposed on hypothesis. Then fithess
scores for all ligands were observed on the bestdcpharmacophore model. The greater the
fitness score, the greater the activity predictbmhe compound. The fit function does not only
check if the feature is mapped or not, it also amst a distance term, which measures the
distance that separates the feature on the molémutethe centroid of the hypothesis feature.

Figure 11l shows the ARRR14 aligned with the magivee compound 1 (max.fithess score=3) of
the training set.

Figurelll: Best pharmacophore model ARRR14 aligned with the most active compound 1 (maximum fitness
scor e = 3) of thetraining set. Phar macophor e features are color coded: hydrogen bond acceptor (A2; pink),
aromatic rings (R4; R5; R6 (orange).

Besides this survival score analysis, the validitgl predictive character ARRR14 were further
assessed by predicting the activity of test setemdés.A test set having five molecules was
analyzed. All the test set molecules were built andimized as well as used in conformational
analysis like all training set molecules. Then #uotivities of test set molecules were predicted
using ARRR14 and compared with the actual activitgtual and predicted activity values of
training & test set molecules are given in Table Wi, respectively. The predictedanti-
inflammatory activityexhibited a correlation of 0.96sing model ARRR14 (Figure V). For a
reliable model, the squared predictive correlatomefficient should be >0.60 [28, 29]. The
results of this study reveal that model ARRR14 ¢mn used for the prediction ddnti-
inflammatory activity Good and consistent external predictivity waseobsd for ARRR14 as
compared to the other hypothesis. ARRR14 showeoaa ¢ value, i.e. 0.811 and squared

predictive correlation coefficient of 0.960 wascatsserved between experimental and predicted
activity values of test set molecules.
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Table V: Experimental and predicted activity of training molecules based on hypothesis ARRR14

S.NO | Experimental activity | Predicted activity
(% inhibition) (% inhibition)
1 43.01 43.96
2 44.08 42.53
3 47.31 44.34
4 35.48 32.93
5 47.31 48.13
6 43.01 43.74
7 36.55 32.91
8 29.03 31.02
9 29.03 33.24
10 38.70 35.55
11 30.10 30.87
12 41.93 39.55
13 35.48 38.78
14 39.78 39.34
15 36.55 40.46
60 -
50
40 - +°
2
Predicted *
Activity
20 -
R?2=0.811
10 -
O T T T T 1
0 10 20 30 40 50
Experimental Activity

FigurelV: Relation between experimental and predicted anti-inflammatory activity of training set molecules
using model ARRR14

Table VI: Experimental and predicted activity of test molecules based on hypothesis ARRR14

S No Experimental activity | Predicted activity
T (%inhibition) (%inhibition)
1 43.01 43.82
2 47.31 42.76
3 40.86 44.84
4 35.48 45.39
5 51.6 41.36
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FigureV: Relation between experimental and predicted anti-inflammatory activity of test set molecules using
model ARRR14

I nter pretation of QSAR model

Additional insights into the inhibitory activity nabe gained by visualizing the QSAR model in
the context of one or more ligands in the seridb warying activity. This information can then
be used to design new and more active analogugsctérial representation dhe 3D QSAR
models based on compound 1 of the training setgugigdrogen bond acceptor and
hydrophobicity features shown in Fig VI-VII. In these representatiotige blue cubes indicate
favorable regions while red cubes indicate unfableraegions for activity

FigureVI: 3D QSAR model based on compound 1 of thetraining set illustrating hydr ogen bond acceptor
features

. Figure VI shows the 3D QSAR model illustrating ttydrogen bond acceptor feature. The blue
region at the site of butenolide moiety shows amystitution by hydrogen bond acceptor in this
region causes increase in activity.
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FigureVIl: 3D QSAR model based on compound 1 of thetraining set illustrating hydrophobic features

The blue region around naphthalene shows any gattaghed to naphthalene which increases
hydrophobicity increases the activity. Red regiorl gosition (bromo) of benzene ring shows
that any hydrophobic group at this position cawsgehse in activity.

The studies show the generation of a pharmacophodel ARRR14 for butenolides acting as
COX inhibitors. Pharmacophore modeling correlates s/ with the spatial arrangement of

various chemical features. Hypothesis ARRR14 repssthe best pharmacophore model for
determining anti-inflammatory activity. ARRR14 casts of one hydrogen bond acceptor, three
aromatic ring features. This pharmacophore mode$ \ahle to accurately predict anti-

inflammatory activity and the validation resultss@lprovide additional confidence in the

proposed pharmacophore model.
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