
Overview of Sql Injection
Saurav Misra*

Department of Computer Science and Information Technology, India
*Corresponding author: Misra S, Department of Computer Science and Information Technology, India; Tel No: 7032901764;
E-Mail: saurav.misra89@gmail.com

Received date: July 25, 2020; Accepted date: August 19, 2021; Published date: August 30, 2021

Citation: Misra S (2020) Overview of Sql Injection. Am J Compt Sci Inform Technol Vol.9 No.8:106

Abstract
SQL Injection is a major injection technique, which is used
to attack data-driven Applications.

Procedures and functions that use dynamic SQL queries by
concatenating the text inputs to the dynamic SQL are prone
to SQL Injection attack as someone can provide extra
commands/malicious text through the input parameter and
when executed can result in the unexpected results.

Example

Here, if the user will provide @user_id = ‘105; DROP TABLE
SomeTable’, an unexpected DROP table will happen.

Best Practices to prevent SQL Injection
Execute Dynamic SQL queries, using SP_EXECUTESQL

procedure with the parameters.

While writing dynamic SQL queries and executing them, one
needs to be cautious in regards to the following.

1. Avoid concatenating the parameter variables with the
query.

Example

2. Avoid executing dynamic SQL queries, using EXEC stored
procedure. This approach does not support passing of
parameters.

Always use SP_EXECUTESQL procedure with the parameters
to execute dynamic SQL queries.

Example

Let @arg1 be the parameter supplied to the procedure, which
contains the script, mentioned below.

EXEC SP_EXECUTESQL

Note
• 1. The first 2 parameters of SP_EXECUTESQL (@cmd and

@parameters should always be of type nvarchar.
• 2. If the dynamic SQL requires multiple string parameters, the

parameters can be written separated by commas.

Example

Here, is a complete example, which demonstrates the usage
of dynamic SQL in a stored procedure in the correct way.

Research Article

iMedPub Journals
www.imedpub.com

American Journal of Computer Science and Information
Technology

ISSN

2021

© Copyright iMedPub | This article is available from: https://www.imedpub.com/computer-science-and-information-technology/ 1

Vol.9 No.8:106

http://www.imedpub.com/
https://www.imedpub.com/computer-science-and-information-technology/

Guidelines to follow while using
parameter in like clause in dynamic SQL

when we use the parameters supplied to a procedure in a
dynamic SQL command and execute it, using EXEC procedure,
there is a chance the input parameter can be used to hack into
the database object.

Example

This works fine but if I pass something like this as
@search_string, the code will be as follows.

This will list out every record from the dbo.My Servers table
as the command, which will go to the db. Will be.

SELECT * FROM dbo.MyServers WHERE server_name LIKE
'%u' OR 1=1 --%'

Here, the best practice is to embed the parameters (search
string) in the dynamic SQL command and execute it, using
SP_EXECUTESQL with the parameters, as shown below

If the supplied pattern matches, the query upon execution
will generate the appropriate records.

If a malicious pattern is supplied, the execution will result in
an empty result set . Please follow the example, stated below.

This will result in an empty resultset and our data will not
show up.

Guidelines to use table/column names in dynamic SQL:

While using the table/column names as the parameters in a
dynamic SQL command, the system defined function
QUOTENAME should be used to enclose the table/column name
with in [and].

Example

Here, the @tabname variable can be used to manipulate the
database in a wrong way. To prevent it, @tabname should be
enclosed within [and] as in this case [My Servers; drop table
dbo.My Configs] will not be considered as a valid table name.

Here is the script

Output
Invalid Object name ‘MyServers;PRINT ‘HELLO’’.

Here is another example, where both column and table
names are used in a dynamic SQL query.

Someone can push something dangerous through the column
name.

American Journal of Computer Science and Information Technology
2021

2 This article is available from: https://www.imedpub.com/computer-science-and-information-technology/

Vol.9 No.8:106

https://www.imedpub.com/computer-science-and-information-technology/

This will print out all the Server names from your
dbo.MyServers table.

This should be rewritten, as stated below.

Output
Invalid column name 'server_name FROM

dbo.MyServers;PRINT 'HELLO BRO! U R HACKED

REFERENCES
1. Aarafat Aldhaqm, Shukor Razak, Siti Othman, Abdulalem Aldolah,

and Md Ngadi (2016). Conceptual Investigation Process Model for
Managing Database Forensic Investigation Knowledge. 12 (02
2016), 386–394.

2. Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N.
Venkatakrishnan (2007). CANDID: Preventing Sql Injection Attacks
Using Dynamic Candidate Evaluations. In Proceedings of the 14th
ACM Conference on Computer and Communications Security
(CCS ’07). ACM, New York, NY, USA, 12–24.

3. Martin Bravenboer, Eelco Dolstra, and Eelco Visser (2007).
Preventing Injection Attacks with Syntax Embeddings. In
Proceedings of the 6th International Conference on Generative
Programming and Component Engineering (GPCE ’07). ACM, New
York, NY, USA, 3–12.

4. Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti (2005).
Using Parse Tree Validation to Prevent SQL Injection Attacks. In
Proceedings of the 5th International Workshop on Software
Engineering and Middleware (SEM ’05). ACM, New York NY, USA,
106–113.

5. L. Chen and L. Tao (2011). Teaching Web Security Using Portable
Virtual Labs. In 2011 IEEE 11th International Conference on
Advanced Learning Technologies. 491–495.

American Journal of Computer Science and Information Technology 2021

© Copyright iMedPub 3

Vol.9 No.8:106

https://scholar.google.com/cit
https://scholar.google.com/cit
https://scholar.google.com/cit
https://scholar.google.com/cit
https://dl.acm.org/doi/abs/10.1145/1315245.1315249
https://dl.acm.org/doi/abs/10.1145/1315245.1315249
https://dl.acm.org/doi/abs/10.1145/1315245.1315249
https://dl.acm.org/doi/abs/10.1145/1315245.1315249
https://dl.acm.org/doi/abs/10.1145/1315245.1315249
https://dl.acm.org/doi/10.1145/1289971.1289975
https://dl.acm.org/doi/10.1145/1289971.1289975
https://dl.acm.org/doi/10.1145/1289971.1289975
https://dl.acm.org/doi/10.1145/1289971.1289975
https://dl.acm.org/doi/10.1145/1289971.1289975

	Contents
	Overview of Sql Injection
	Abstract
	Best Practices to prevent SQL Injection
	EXEC SP_EXECUTESQL
	Note
	Guidelines to follow while using parameter in like clause in dynamic SQL
	Here is the script
	Output
	Output
	REFERENCES

