
2021
Vol. 9 No.1 : 71

iMedPub Journals
http://www.imedpub.com

Editorial

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://colorectal-cancer.imedpub.com/archive.php

American Journal of Computer
Science and Information Technology

Object-Oriented Programming
Received: December 12, 2020; Accepted: December 26, 2020; Published: January 02,
2021

Saranya Govindharaj*

Department of Molecular Biology, CSIR-
Institute of Genomics and Integrative
Biology, Sukhdev Vihar, Mathura Road, New
Delhi, India

Corresponding author:
Saranya Govindharaj, Department of
Molecular Biology, CSIR-Institute of
Genomics and Integrative Biology, Sukhdev
Vihar, Mathura Road, New Delhi, India

 saranya.g@gmail.com

Citation: Govindharaj S (2021) Object-
Oriented Programming. Am J Compt Sci
InformTechnol Vol.9 No.1: 69.

Editorial note
Many people have assessed Object-Oriented Programming, as
well as very protuberant software engineers. The unpleasant
fact is that OOP flops at the only task it is intend to address. It
appearances decent on paper we have clean hierarchies of
humans, dogs, animals, etc. However, it reductions flat once
the difficulty of the application starts cumulative. In its place of
dipping difficulty, it inspires immoral distribution of changeable
state and introduces extra complexity with its numerous design
patterns. OOP brands common growth practices, like testing and
refactoring, unnecessarily hard.

The global state is root of all evil and it is avoided at all costs. OOP
challenges to model the whole thing as a hierarchy of objects.
Inappropriately, that is not how belongings work in the real
world. Substances in the real world interrelate with each other
using mails, but they mostly are self-determining of each other.
OOP inheritance is not modelled afterward the real world. The
parent object in the real world cannot change the behaviour of
child objects. Even though we inherit our DNA from our parents,
we unable to make changes to our DNA as they please. We do
not inherit behaviours from our parents; you develop your own
behaviours, we unable to override our parent’s behaviours.
Object oriented programming has concepts that are inheritance,
encapsulation, method, object, class, polymorphism, abstraction,
message passing.

Inheritance: It is an important pillar and the mechanism of java.

Encapsulation: In single unit it is wrapping up the data, it can
manipulate the data and code. In a class data concealed from
other classes known as data-hiding.

Method: It is a statement collection perform exact task without
returning. Access modifier is a type of method that is from where
it can be accessed, 4 types of access specifiers, those are public
private, protected default.

Object: It is a basic unit represents the real life entities. Java
programme via typical can create many objects those are
behaviour, identity, state.

Class: It is defined as blueprint of user from object which is
created, class declarations include components those are class
name, super class, modifiers, interfaces and body.

Polymorphism: It is ability to OOPs language, entities which they
are in the same name efficiently it can discriminate.

Abstraction: By virtue it is the property having only important
details is display, unimportant details cannot display. For ex. If
we driving a car having no idea regarding the inner mechanism
of car. In java it is achieved by abstract classes and interfaces.
Message passing: Object communicates with one and receiving
and transforming information to each other. For object a message
is a request for procedure execution it can appeal an object
receiving function generate the results in desired manner.

Objects are like animal or plant cells objects are shaped from a
class that acts as a “mold” or “blue print” just as cells is created
from a genetic “blueprint”, usually in the form of DNA. Both
classes and genes describe the qualities and behaviors of the
objects they make, and even however these cells or objects might
have dissimilar internal “states”, they start off as copies made
from the same mold.

