Molecular Mechanism of Phenylhydrazine Induced Haematotoxicity: A Review

Keerti Pandey, Anil Kumar Meena, Akansha Jain and R. K. Singh*

Division of Toxicology, CSIR-Central Drug Research Institute, Jankipuram Extension Lucknow-226031

ABSTRACT

Phenylhydrazine (PHZ), a potent chemical causes toxicity on various tissues at various levels. Administration of phenylhydrazine mainly causes haematotoxicity which leads to the haemolytic anemia. In mammals PHZ induced anemia increased the iron absorption in spleen, liver and duodenum and finally iron metabolism was altered. Local demand and supply of Fe would increase erythropoeitic activity of the spleen so the size of spleen was increased that create the splenomegaly. PHZ induced anemia activate immune response which triggers phagocytosis in the spleen and liver. Apart from this administration of PHZ interfere the binding of erythropoietin (EPO) with erythropoietin receptors (EPOR) so that JAK-STAT would be affected.PHZ also showed genotoxic effect by creating single strand DNA damage.

Keywords: Phenylhydrazine, Haematotoxicity, Haemolytic anemia, EPO receptors.

INTRODUCTION

Phenylhydrazine (Hydrazinobenzene) is the chemical compound characterized by Hermann Emil Fischer in 1895. The chemical structure and physicochemical characteristics are given below:-

Physicochemical Characteristics:-

Chemical formula-C6H8N2 Density- 1.10 g/cm³ Molar mass- 108.14g/mol Boiling point- 243.5 °C Melting point- 19.5 °C Colour- Yellow to pale brown oily liquid

It is mainly used as a chemical pharmaceutical. intermediate in the agrochemical, and chemical industries. PHZ derivatives were primarily used as antipyretics but due to its toxic action on red blood cells made their use dangerous. Phenylhydrazine was mainly used for experimental induction of anemia in animals. PHZ acts as a potent drug against polycythemia Vera² a disorder¹⁵, which is characterized by increase in the total number of erythrocytes in the body. PHZ decreases Haemoglobin levels, RBC (Red Blood Cell) count and PCV (Packed Cell Volume) whereas increases the MCV (Mean Cell Volume), MCH (Mean Cell Hemoglobin),

MCHC (Mean Corpuscular Hemoglobin Concentration) and extramedular haematopoiesis in the spleen and liver¹⁶.

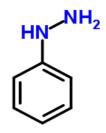


Figure1: Chemical structure of Phenylhydrazine

Mechanism of Phenylhydrazine Induced Toxicity

Haemolytic anemia

Phenylhydrazine (PHZ) -induces hemolytic anemia to study erythropoietin regenerative response through clinical, pathological, and morphological studies. PHZ is absorbed by the inhalation, oral and dermal routs hemotoxicant PHZ causes oxidative stress within erythrocytes resulting oxidation of oxyhemoglobin leading to the formation of methemoglobin which is subsequently converted into irreversible hemichromes that lead to the precipitation of hemoglobin in the form of Heinz bodies^{13,14}. PHZ causes damage in skeletal protein, lipid peroxidation. ATP depletion. cation Imbalances. and reduced membrane deformability. All these symptoms show hemolytic anemia⁷.

Alteration of iron metabolism

In mammals Iron metabolism is altered by haemolytic anemia induced by Phenylhydrazine. Phenylhydrazine (PHZ)induced anemia increases the iron absorption^{5,12} that induces the expression of iron transport genes (Dcytb, DMT1-IRE and Ireg) in the duodenum so the expression of Dcytb, DMT1-IRE and Ireg1 mRNA was enhanced in the duodenum of PHZ-treated

mice. The patterns of gene expression in the Duodenum can be seen by RT-PCR analyses. Dcytb and Ireg1 genes are also involved in iron metabolism in spleen and liver of the PHZ-treated mice. During a period of acute haemolysis the catabolic and anabolic pathways of haemoglobin in the spleen must be regulated to maintain a balance in systemic iron homeostasis by measuring the expression of transferrin receptor (TFR1) and haem oxygenase (HO1). HO1 is an important inducible enzyme involved in haem degradation³ and also causes iron efflux from cell⁹. The expression of Ireg1, TFR1 and HO1will increased in the spleen of the PHZtreated mice. In PHZ-treated mice the level of Dcytb in spleen will also be increased .finally local demand and supply of Fe will increases erythropoeitic activity of the spleen so the size of spleen will increase it will cause the splenomegaly. Liver also plays an important role in maintaining body iron homeostasis. We can examine the hepatic expression of several relevant genes following PHZinduced haemolysis. The expression of TFR1 in liver was significantly increased in PHZtreated mice, while hepcidin expression will decrease.

Effect of PHZ on immune system

anemia PHZ-induced is also responsible for immune activation¹⁰. In this respect, PHZ can cross red blood cells and binds with circulating autologous antibodies⁸. This antigen- antibody complex is recognized by macrophage receptors which triggers phagocytosis in the spleen and liver. This indicates that damaged cells are removed intact by the spleen. Apart from blood storage and immune competence, the spleen also acts as the main erythrophagocytic organ in rodents and rabbits which are suffering from PHZ induced haemolytic anemia⁴.

Effect of PHZ on JAK-STAT pathway

PHZ also affects the EPO receptors of JAK-STAT pathway which is responsible for the maturation of red blood cells. After Phenylhydrazine-induced anemia, EpoR-HM mice failed to respond with efficient erythropoisis⁶. splenic stress The erythropoietin receptor which is a member of the cytokine receptor family, upon erythropoietin binding, this receptor activates Jak2 tyrosine kinase which activates different intracellular pathways including: Ras/MAP kinase. phosphatidylinositol 3-kinase and STAT transcription factors. The stimulated ervthropoietin receptor appears to have a role in erythroid cell survival. Defects in the erythropoietin receptor may produce erythroleukemia and familial erythrocytosis. Disregulation of this cytokine may affect the growth of certain tumors.

Genotoxic effect of phenylhydrazine

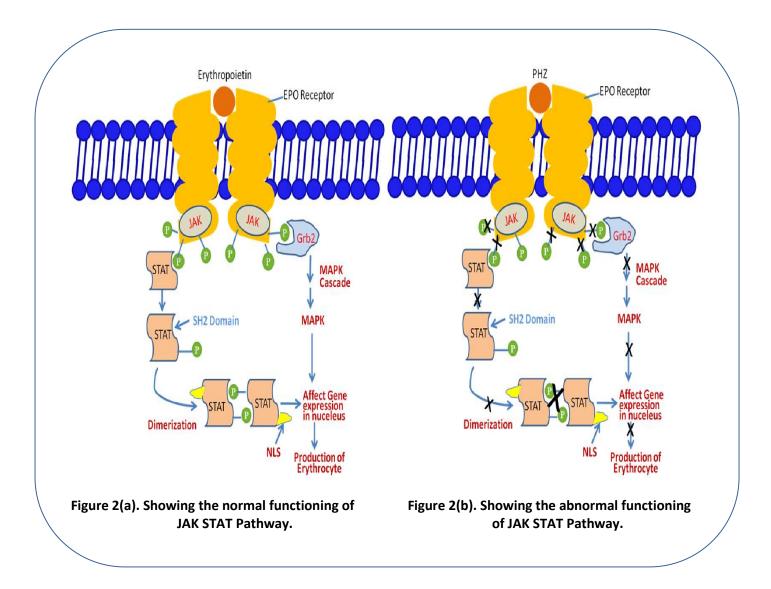
PHZ create single strand DNA damage from lung tissue extracts and mouse liver through alkaline elution rate method¹¹. In an experiment, the liver DNA from PHZ treated rats was analyzed by electrophoresis and found to be markedly fragmented¹.

DISCUSSION

PHZ is absorbed by the inhalation, oral and dermal routs. After absorption it causes oxidative stress in RBCs and generates reactive oxygen species (ROS) in the RBCs this ROS reacts with haemoglobin and oxyhaemoglobin changes the in to methaemoglobin, hemichromes and other haemoglobin breakdown products such as Heinz bodies .This compound seems to be very useful in models studying mechanism of hemolytic anaemia. PHZ induces a reactive oxygen species formation which results in Peroxidation of lipid and oxidative degradation of spectrin in the membrane Skelton. This chemical has potential for skin

and eye irritation in human and animals. After that PHZ translocates the phosphatidylserine from inner to outer of the plasma membrane and causes the membrane lipid peroxidation due to lipid peroxidation RBCs enter in the spleen and uptake by the macrophages. It is signal for Phagocytosis of cell under programmed death by macrophages. It will cause haemolytic anemia. Apart from haemolytic anemia PHZ also alters the iron metabolism by increasing the expression of ferrous transporter (DMT1) in the spleen, duodenum and liver. DMTI transporter promotes the expression of genes related to iron metabolism such as ferric reductase DCytb, Ireg1 and DMT1 in human and mice. Expression level is checked by Northern blot, RT-PCR and immunocytochemistry. Increased mRNA expression of DCytb, DMT1, Ireg1 and IFR1 in spleen and liver will increase the iron demand resulting stimulation of erythropoisis so the size of spleen will increase it will causes the splenomegaly. PHZ also affects the EPO receptors of JAK-STAT pathway which is responsible for the maturation of red blood Phenylhydrazine-induced cells. anemia. EpoR-HM mice failed to respond with efficient splenic stress erythropoisis.

CONCLUSION


From the above result it may be concluded that phenylhydrazine create toxicity at various level PHZ create haemolytic anemia, alter iron metabolism that lead to the splenomegaly and activate immune response. Apart from this PHZ also creates genotoxicity and interfere JAK-STAT pathway.

REFERENCES

1. Ferrali M, Signorini C, Sugherini L, Pompella A, Maura L, Caciotti B, Ciccoli L, Comporti M. Release of free redoxactive iron in the liver and DNA oxidative damage following phenylhydarzine intoxication. Biochemical Pharmacology 1997; 53(11): 1743 – 1751.

- 2. Falconer E. Treatment of polycythemia: the reticulocyte response to venesection, phenylhydrazin and radiation. Ann. Intern. Med 1933; 7:172–189.
- 3. Hediger F, Farzaneh RJ, Simpson. An ironregulated ferric reductase associated with the absorption of dietary iron. Science 2001; 291: 1755–1759.
- 4. Latunde-dada GO, McKie AT, Simpson RJ. Animal models with enhanced erythropoisis and iron absorption. Biochim Biophys Acta 2006; 1762:414-423.
- McKie AT, Barrow D, Latunde, Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S. Tissue specific changes in iron metabolism genes in mice following Phenylhydrazine-induced haemolysis. 2004; 169–176.
- Madhu KeLi, Menon P, Karur, Vinit G, Hegde, Shailaja, Don M, Wojchowski. Attenuated signaling by a phosphotyrosinenull Epo receptor form in primary erythroid progenitor cells. 2003; 102: 3147-3153.
- 7. McMillan DC, Jensen CB, Jollow DJ. Role of lipid peroxidation in dapsone-induced hemolityc anemia. 1998; 287:868–876.
- Magnani M, StocchiV, Cucchiarini L, Chiarantini L, Fornaini G. Red blood cell phagocytosis and lysis following oxidative damage by phenylhydrazine. Cell. Biochem. Funct 1986; 4: 263- 269.

- Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annual Review Toxicology 1997; 37: 517– 554.
- Naughton BA, Dornfest BS, Bush ME, Carlson CA, Lapin DM. Immune activation is associated with phenylhydrazine-induced anemia in the rat. J Lab Clin Med 1990; 116:498-507.
- 11. Parodi S, Taningher M, Russo P, Pala M, Tamaro M, Montibragadin. DNA damaging activity in vivo and bacterial mutagenicity of 16 aromatic–amines and azo–derivatives as related quantatively to their carcinogenicity. Carcinogenesis 1981; 2:1317–1326.
- Raja KB, Simpson RJ, Peter's TJ. Effect of exchange transfusion of reticulocytes on in vitro and in vivo intestinal iron (Fe3+) absorption in mice. British Journal of Hematology 1989; 73:254–259.
- Rifkind. Heinz body anemia: an ultrastructural study. II. Red cell sequestration and destruction. Blood 1965; 26: 433-448.
- 14. Rifkind RA, Danon D. Heinz Body anemia-An ultrastructural study. I. Heinz Body formation. Blood 1965; 25: 885-895.
- 15. Spivak JK. Polycythemia Vera: myths, mechanisms, and management. Blood 2002; 100:4272-4290.
- Unami A, Nishina N, Terai T, Sato S, Tamura T, Noda K, Mine Y. Effect of cisplatin on erythropoietin production in rats. Journal of Toxicological Sciences 1996; 21(3):157-158.

