

Pelagia Research Library

Der Chemica Sinica, 2012, 3(6):1438-1443

Molecular interactions by ultrasonic velocity, viscosity and density measurements in binary mixtures at 298.15 K

G. P. Borse¹, U. G. Deshpande², S. R. Patil³ and A. R. Hiray⁴

¹Department of Chemistry, R.L. College, Parola (MS), India. ²Department of Chemistry, Pratap College, Amalner (MS), India. ³Department of Chemistry, A.S.C. College, Chopda (MS), India. ⁴Department of Chemistry, M.S.G. College, Malegaon (MS), India.

ABSTRACT

The ultrasonic velocity (U), viscosity (η) and density (ρ) at 298.15 K have been measured in the binary mixture of methanol and ethanol with p-anisaldehyde over entire range of mole fraction. From the experimental data, various acoustical parameters such as acoustic impedance (Z), relative association (R_A), internal pressure ($_{int}$), intermolecular free length (L_F), adiabatic compressibility (K_s), and apparent molar volume (V). The results were interpreted in terms of molecular interaction between the components of the mixtures.

Keywords: Density, Viscosity, Ultrasonic velocity, acoustic properties, molecular interaction.

INTRODUCTION

The ultrasonic velocities (U), viscosity (η) and Density (ρ) measurements find wide applications in characterizing the physico-chemical behaviour of the binary liquid mixtures.[1-3] These studies find extensive application in chemical engineering design, process simulation, solution theory and molecular dynamics [4-7]. These properties are extensively used to estimate the thermodynamics properties and predict the intermolecular interactions. Panisaldehyde is chemically known as 4-methoxy benzaldehyde and used in perfume and pharmaceutical industries. These physico-chemical analyses are used to handle the mixtures of alcohols, aldehyde, ketones, hydrocarbons etc.

The study of molecular association in binary liquid mixture having 1-alkanol group as one of component is of particular interest since alcohols are strongly self associated liquids having three dimensional network of hydrogen bonding and can be associated with any other group having some degree of polar attraction.[8-11] p-anisaldehyde is approtic solvent, strongly associated due to highly polar C = 0 group in the molecule and large dipole moment. The variation in ultrasonic velocity gives information about the bonding between molecules and formation of complexes at various concentration and temperature through molecular interactions.[12-15]

In view of the importance mentioned, an attempt has been made to elucidate the molecular interactions in the mixtures of methanol and ethanol with p-anisaldehyde respectively at 298.15 K with regards to adiabatic compressibility (K_s), intermolecular free length (L_f), acoustic impedance (z), relative association (R_A), internal pressure (π_{int}) and apparent molar volume (ϕ_v), from ultrasonic measurements.

MATERIALS AND METHODS

The chemicals methanol, ethanol and p-anisaldehyde used were of analytical grade (AR) and spectroscopic reagent (SR) grades of minimum assay of 99.9 % obtained from Hi-media and Sd fine chemicals, India, which are used as

Pelagia Research Library

such without further purification. The densities of pure components and binary mixtures were measured by using a Bi-capillary pycometer. The purities of the above chemicals were checked by density determination at 298.15 K, the uncertainty is less than $\pm 1 \times 10^{-4}$ gcm⁻³. The binary liquid mixtures of different known concentrations were prepared in stopper measuring flasks. The weight of the sample was measured using electronic digital balance with an accuracy of ± 0.1 mg. An Ubbelohde viscometer (20 ml) was used in the viscosity measurement and efflux time was determined using a digital clock to within ± 0.015 . The ultrasonic velocity (U) in liquid mixtures have been measured at 298.15 K using an ultrasonic interferometer (Mittal type, model f-83) working at 2 MHz frequency. The accuracy of sound velocity was ± 0.1 ms⁻¹. An electronically digital double walled measuring cell made up of steel containing the experimental solution at the desired temperature with accuracy of ± 0.01 K.

Theory :

From these experimental values, K_s , L_f , Z, R_A , π_{int} , and $V_{\phi,1}$ have been calculated using the following equations -

Ks
$$= \frac{1}{PU^2}$$
 ----- (1)
L_f $= K \cdot (K_s)^{1/2}$ ----- (2)

where K is a Jacoben's constant.

$$Z = P. U \qquad \dots (3)$$
$$R_A = \left(\frac{L_f}{L_f}\right)^3 \qquad \dots (4)$$

 $\dot{L_{f}}$ is the free length of the ideal mixture.

where 'b' is a constant, 'k' is an absolute temperature in Kelvin η_{12} is viscosity in Nsm⁻², 'U₁₂' is the ultrasonic velocity in m/s and M₁₂ is the mean molecular weight of mixture

 X_1 and X_1 mole fraction of solute (1) and solvent (2) M_1 and M_2 - Molecular weight of solute (1) and solvent (2)

$$V_{,1} = \frac{X_2 M_2 (P_2 - P_{12})}{X_1 P_2 P_{12}} + \frac{M_1}{P_{12}} - \dots (7)$$

where, X_1 and X_2 are the mole fractions of component (1) and (2) P_2 and P_{12} are the densities (2) and liquid mixtures M_1 and M_2 are the molecular weights of components (1) and (2) respectively.

RESULTS AND DISCUSSION

The measured parameters viz. density (ρ), viscosity (η) and ultrasonic velocity (U) and calculated parameters such as adiabatic compressibility (K_s), intermolecular free length (L_f), acoustic impedance (z), relative association (R_A), internal pressure (π_{int}) and apparent molar volume (V₁) for the System 1 : methanol (1) + p-anisaldehyde (2) at 298.15 K are given n Table 1 and 2, for the System 2 : Ethanol (1) + p-anisaldehyde (2) at 298.15 K are given in Table 3 and 4.From the Table 1 and Table 3, it is observed that both the system (I) and (II), ultrasonic velocity decreases with concentration of methanol (1) and ethanol (1) in p-anisaldehyde. This indicates that, strong interaction observed at lower concentration of alcohols. The density values also have the same trends with velocity in the system (I) system (II). Density decreases due to the decreased electrostriction in that solution. This less electrostriction increases the volume and hence decreases in the density.[16] Viscosity decreases in system I and system II, suggesting thereby more association between solute and solvent molecules.[17] From the Table 1 and Table 1 and Table 3, it is observed that, adiabatic compressibility (Ks) increases with increase in the concentration of methanol

(1) and ethanol (1) in p-anisaldehyde (2). This increase in structural disorder of p-anisaldehyde may be result in less cohesion, and leads to a increase in K_s . The increase in K_s results in an decrease in the value of U.[18]

The parameter, the free length (L_f) is calculated from the ultrasonic velocity (U) and adiabatic compressibility (K_s) . It is observed that L_f , increases with the concentration of methanol (1), and ethanol (1) in p-anisaldehyde (2). Increase in intermolecular free length leads to negative deviation in sound velocity and positive deviation in compressibility. This indicates that the molecules are away from each other in the both system.

The computed other parameters like acoustic impedance (z), relative association (R_A), internal pressure (π_{int}) and apparent molar volume ($V_{\phi,1}$) of system (I) and system (II) are given in Table 2 and Table 4 respectively. Acoustic impedance (z) found to be almost reciprocal of K_s . The acoustic impedance decreases with increase adiabatic compressibility (K_s) with increase in concentration of methanol (1) and ethanol (1) in p-anisaldehyde (2). The decrease in z with concentration can be explained on the basis of hydrophobic interaction between solute and solvent molecules [19-21] which increases the intermolecular distance making relative wider gap between the molecules.

The relative association (R_A) decrease with increase in concentration upto $X_1 = 0.4 - 0.5$ and then increases of methanol (1) and ethanol (1) in p-anisaldehyde due to increase in electrostatic attraction. The internal pressure (π_{int}) increases with increase the concentration of alkanols in p-anisaldehyde in both the systems I and II due to decrease in free volume and close association between solute and solvent. Thus, a progressive decrease in free volume and increase in internal pressure in methanol + p-anisaldehyde than ethanol + p-anisaldehyde mixtures clearly indicates the existence of ion-solvent interaction is more in system I, due to which the structural arrangement is considerably affected[22-23]. The apparent molar volume is the practically available molar volume of the solute. In both the systems, the apparent molar volume increases with increase the concentration of methanol (solute) in the p-anisaldehyde [24-25].

Table 1: Values of density (ρ), viscosity (η), ultrasonic velocity (U), adiabatic compressibility (K _s) and intermolecular free length (L _t) at
different concentrations for binary system of Methanol (1) + p-anisaldehyde (2) at 298.15 K

Conc. X ₁	Density p (kg/m ³)	Viscosity η x 10 ⁻³ (kg/m ³)	Ultrasonic velocity U (m/s)	Adiabatic compressibility K _s x 10 ⁻¹⁰ (Pa ⁻¹)	Intermolecular free length L _f x 10 ⁻¹⁰ (m)
0.0000	1.1159	4.2025	1526.8	384.42	0.3874
0.1227	1.1074	3.5601	1517.6	392.50	0.3915
0.2453	1.0972	2.9942	1508.4	400.57	0.3955
0.3312	1.0867	2.6152	1472.5	418.07	0.4039
0.4171	1.0723	2.2846	1463.6	435.35	0.4123
0.5090	1.0517	1.9654	1441.2	469.16	0.4280
0.6600	1.0063	1.4929	1399.2	507.59	0.4452
0.7481	0.9709	1.2309	1357.2	559.16	0.4673
0.8101	0.9402	1.0467	1315.2	614.89	0.4850
0.9185	0.8667	0.7286	1265.2	690.83	0.5194
0.9625	0.8272	0.6162	1202.0	995.47	0.6234
1.0000	0.7864	0.5513	1098.0	1054.76	0.6417

Table 2: Calculated values of acoustic impedance (z), relative association (R_A), internal pressure (π_{int}) and apparent molar volume ($V_{\varphi,1}$)at different concentrations for binary system of Methanol (1) + p-anisaldehyde (2) at 298.15 K

Conc. X ₁	Acoustic z x 10 ⁻³ (kg S ⁻¹ m ⁻³)	Relative association R_A	Internal pressure π_{int} (Pa)	Apparent molar volume $V_{\phi,1} \ge 10^{-3} (m^3 \text{ mol}^{-1})$
0.0000	1703.76	1.0000	58509.01	
0.1227	1687.82	0.3349	59721.18	36.5943
0.2453	1655.02	0.3078	60933.34	35.5824
0.3312	1612.22	0.2799	62773.64	36.1116
0.4171	1569.42	0.2521	64613.93	36.8064
0.5090	1478.96	0.2431	69851.14	37.6464
0.6600	1408.02	0.2698	73208.28	38.6854
0.7481	1317.71	0.3145	78098.39	39.1366
0.8101	1236.55	0.3723	84032.84	39.4248
0.9185	1144.12	0.4605	90817.33	40.0825
0.9625	911.57	0.8752	103644.8	40.307
1.0000	863.47	1.0000	106789.8	

 $\begin{array}{l} \mbox{Table 3: Values of density } (p), \mbox{viscosity } (\eta), \mbox{ultrasonic velocity } (U), \mbox{adiabatic compressibility } (K_s) \mbox{ and intermolecular free length } (L_t) \mbox{ at different concentrations for binary system of ethanol } (1) + p\mbox{-anisaldehyde } (2) \mbox{ at 298.15 K} \end{array}$

Conc. X ₁	Density p (kg/m ³)	Viscosity η x 10 ⁻³ (kg/m ³)	Ultrasonic velocity U (m/s)	Adiabatic compressibility K _s x 10 ⁻¹⁰ (Pa ⁻¹)	Intermolecular free length L _f x 10 ⁻¹⁰ (m)
0.0000	1.1159	4.2025	1526.8	384.424	0.3874
0.0935	1.1052	3.7790	1518.4	392.79	0.3916
0.1869	1.0933	3.3911	1510.0	401.15	0.3958
0.3318	1.0702	2.8220	1478.4	427.51	0.4086
0.4630	1.0416	2.3954	1434.4	466.61	0.4268
0.5799	1.0085	2.0512	1393.2	510.85	0.4466
0.6569	0.9815	1.8611	1376.8	537.49	0.4511
0.7464	0.9443	1.6458	1335.2	594.02	0.4816
0.8324	0.9012	1.4314	1276.0	681.52	0.5159
0.8873	0.8689	1.3194	1223.6	768.69	0.5479
0.9454	0.8283	1.1884	1201.2	836.72	0.5716
1.000	0.7851	1.0826	1173.6	924.77	0.6009

Table 4: Calculated values of acoustic impedance (z), relative association (R_A), internal pressure (π_{int}) and apparent molar volume ($V_{\phi,1}$) at different concentrations for binary system of ethanol (1) + p-anisaldehyde (2) at 298.15 K

Conc. X1	Acoustic z x 10^{-3} (kg S ⁻¹ m ⁻³)	Relative association R _A	Internal pressure π_{int} (Pa)	Apparent molar volume $V_{\Phi 1} \ge 10^{-3} (m^3 \text{ mol}^{-1})$
0.0000	1703.76	1.0000	58509.01	•••••
0.6935	1677.32	0.6409	59655.42	47.6777
0.1869	1650.88	0.5454	60801.83	47.6058
0.3318	1582.18	0.4499	63262.79	47.9083
0.4630	1494.07	0.4334	66663.98	48.5575
0.5799	1405.04	0.4497	70313.42	49.1509
0.6569	1351.33	0.4642	73166.22	49.5499
0.7464	1260.83	0.5216	77462.96	49.9652
0.8324	1149.93	0.6311	82326.57	50.3164
0.8873	1063.19	0.7541	86907.81	50.5219
0.9454	994.55	0.8563	90357.16	50.8196
1.0000	921.39	1.0000	94784.34	

Fig. 1 (A) Density (ρ) Vs. mole fraction for binary systems of methanol (1) and ethanol (1) with p-anisaldehyde at 298.15 K

Fig. 1 (B) Viscosity (η) Vs. mole fraction for binary systems of methanol (1) and ethanol (1) with p-anisaldehyde at 298.15 K

Fig. 1 (C) Ultrasonic velocity (U) Vs. mole fraction for binary systems of methanol (1) and ethanol (1) with p-anisaldehyde at 298.15 K

Fig. 1 (D) Adiabatic compression (Ks) Vs. mole fraction for binary systems of methanol (1) and ethanol (1) with p-anisaldehyde at 298.15 K $\,$

Fig. 1 (E) Apparent molar volume $V_{(\phi,1)}$ Vs. mole fraction for binary systems of methanol (1) and ethanol (1) with p-anisaldehyde at 298.15 K

CONCLUSION

This paper reports experimental data for density viscosity and ultrasonic velocity for binary mixture of methanol + p-anisaldehyde and ethanol + p-anisaldehyde. Over entire range of mole fraction at 298.15 K from these experimental data the related parameters were calculated. The observed decrease of ultrasonic velocity indicates the solute-solvent interaction. The existence of molecular interaction in solute-solvent is favoured in System I and II, confirmed from the U, ρ , η , K_s, L_f, z, R_A, π_{int} and V_(ϕ ,1) data. The existence of molecular interaction in the mixture is in the order methanol > ethanol.

REFERENCES

[1] Mehra K.S., Indian J. Pure and Appl Phy, 2000, 38, 760.

- [2] Fort R.J. and W.R. Moore, Trans faraday society, 1965, 61, 2102.
- [3] Kinocid, J.Am. Chem Soc, SI, 1929, 2950.
- [4] Granberg L. and Nissan, Nature, 1946, 164, 799.

[5] Patil S.R., U.G. Deshpande and A.R. Hiray, Rasayan J. Chem, 2010, 66-73.

- [6] Nikam P.S. and Hirey, Indian J. Pure and Appl Phys, 1991, 29, 155.
- [7] Johari G.K. and Misra R.C., Indian J. Pure and Appl Phys, 1987, 29, 155.
- [8] RC Scaduta, Free Radical Med, 1995, 18 (2), 271.

[9] Hischfelder J.O., Kurtiss C.F. and Bird R.B., *Molecular theory of gases and liquids*, (John Willy, New York - 01), **1954**, 256.

- [10] P.Vigoures, Ultrasonic, Chapman and Hall, London, 1952.
- [11] Miyanga Stamura K. and Murakarmi, S.J. Chem Thermodynamics, 1992, 48, 1767.
- [12] Bhath S.S., Vivek J.S. and Singh D.P., Acoustica, **1982**, 50, 291.
- [13] Shanti N., Subrathinam P.L. and Emayavavyramban M, 2010, 7, 648.
- [14] Sumathi T. and Uma Maheshwari, Indian J. Pure and Appl Phys, 2009, 47, 782.
- [15] Rajendren V., Indian J. Pure and Appl Phys, 1996, 34, 52.
- [16] J. Ishwara Bhata and N.S. Shree Varaprasada, Indian J of Pure and Appl Phys, Vol 40, April 2003, 275.
- [17] Kapdi U.R., D.G. Hundiwale, N.B. Patil, M. Lande, Fluid phase equilibrium, 2001, 201, 335-341.
- [18] Bedare G.R., et. al., Euro J. Appl Eng Sci Res, 2012, 1 (1): 1.
- [19] Ishwara Bhat J and Shivakumar H.R., Indian J.Chem A, 1998, 37, 252.
- [20] Nikumbh, A.B., Kulkarni, G,K., Der Chemica Sinica, 2012, 3(5), 1260.
- [21] Chimankar, Omprakash P., Dudhe, Chandragupt M., Tabhane, Priyanka, Der Chemica Sinica. 2012, 3(4), 944.
- [22] Aravind R. Mahajan and Sunil R. Mirgane, Advances in Applied Science Research, 2012, 3 (5):3243.
- [23] Chimankar ,O.P., Shriwas ,R.S., Tabhane ,V.A., Advances in Applied Science Research. 2010,1(3),78.
- [24] Thakur ,S.K., Chouhan ,S., Advances in Applied Science Research. 2011, 2(2) ,208.
- [25] Patil ,S.S., Mirgane, S.R., B.R. Arbad; Advances in Applied Science Research. 2012, 3(4), 2378.