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Abstract

Neurofibromatosis Type I (NF1) syndrome is characterized
by neurofibromas and neural tumors but is also
associated with skeletal abnormalities. The cellular
pathophysiology of skeletal abnormalities in NF1 is not
understood. These abnormalities result from constitutive
active RAS and its downstream effectors, RASERK
pathway, due to mutation of NF1 gene which converts
active RAS-GTP into inactive RAS-GDP. In osteoblast cells,
RAS-ERK pathway is involved in cell proliferation and
differentiation and is also involved in mechanical signals
transduction.

In this study, we propose that Nf1 mutation in osteoblast
cells will affect the response to mechanical stimulation
through the RAS pathway. The Flexcell tension system was
used to mechanically stimulate calvarial osteoblast
precursor from conditional knockout mice, Nf1(ob-/-), and
wild type calvarial osteoblast precursor cells, (WT. The
protocol of cyclic mechanical strain was 2% to 4%
elongation at 0.16 Hz (10 cycles per minute) for 24 h.
Mechanically stimulated cells showed lower expression
levels of the osteoblast marker gene, RUNX2, measured at
4 h and 8 h post-stretch. Mineralized matrix deposition,
assessed by Alizarin red staining, was decreased in
Nf1(ob-/-) compared to (WT) cells following mechanical
stimulation. the Nf1(ob-/-) and WT osteoblast precursor
cells were then treated with RAS inhibitor (FTI-277), for 4
h and 8 h. RUNX2 expression level was increased in
Nf1(ob-/-) cells compared to non-treated cells. However,
the opposite result was seen in (WT) cells. The FTI-277
treatment resulted in lower RUNX2 expression level and
lower mineralized matrix deposition.

This response of (WT) cells was normal. However, the
Nf1(ob-/-) response showed that these cells although they
have hyper-active RAS, but when it is exposed to stress, it
loses its ability to express osteoblast markers or lay down
mineralized matrix. Our results indicate that, the hyper-
active RAS in NF1 mutant osteoblast will result in cells
being stuck in proliferative state and unable to
differentiate.
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Introduction
Neurofibromatosis type 1 (NF1) is an autosomal dominant

disorder caused by loss of function mutations in the NF1 gene
with an incidence of approximately 1 in 3000, making it one of
the most common genetic disorders [1,2]. NF1 syndrome is
primarily characterized by subcutaneous neurofibromas and
neural tumors. In addition, NF1 is associated with several
skeletal abnormalities including, scoliosis, tibial bowing and
sphenoid wing dysplasia [3,4]. Unfortunately, the cellular
pathophysiology of the NF1 skeletal dysplasia is still not fully
understood [5]. The main functional domain of NF1 gene is
known to be located between exon 27 and 34, known as RAS-
GAP domain which gives the NF1 gene it’s tumor suppressor
property [6,7]. The NF1 gene encodes neurofibromin, a RAS
GTPase-activating protein (GAP) that promotes the conversion
of an active RAS-GTP-bound form to an inactive RAS-GDP form
and functions to negatively regulate the activity of RAS
effectors, including the RAF–MEK–ERK signaling pathway [8,9].
Thus, NF1 mutations results in activation of canonical mitogen-
activated protein kinase (MAPK) signaling [10,11]. Of relevance
to skeletal development, NF1 expression has been reported in
hypertrophic chondrocytes, which are an important
intermediate step during endochondral ossification, and also
in adult osteoblast and osteoclasts [12,13] either of which
might explain the skeletal involvement in NF1. It is established
that skeletal tissue can sense mechanical loading which
induces bone remodeling activity, resulting in structural
changes through different cellular pathways. Several studies
have shown that, RAS-MAPK-ERK pathway is the main
contributor in mechanical signaling response in osteoblast cells
[14-17]. The role of MAPK signaling components have been
shown to favor osteoblastic cell proliferation and
differentiation. In particular, ERK1/2 is involved in cell
proliferation, differentiation and the survival of several cell
types, including osteoblasts [18,19]. ERK1/2 signals can
promote the proliferation and anabolism of osteoblasts in
order to facilitate bone turnover, thereby contributing to the
homeostasis of bone tissue [20,21].
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Knowing that neurofibromin is expressed in bone cells and
acting on RAS signaling pathway and that bone cells can adapt
to mechanical stimulation through activation of the RAS
signaling pathway, we hypothesize that the response of NF1
mutant osteoblast to mechanical stress is defective which
contributes to the skeletal tissue abnormalities in NF1
patients.

Signaling in NF1 Osteoblast Cells
Here we conduct multiple experiments to determine how

NF1 mutant osteoblast cells respond to mechanical stress in
terms of bone formation and differentiation. We tested if
antagonizing the hyper-active RAS in NF1 osteoblast cells
would reverse the effect of the mutation. In the mouse model
employed (herein called NF1(ob-/-) mice), ablation of NF1
occurs at the pre-osteoblast stage and is restricted to bone
forming cells [22-24]. The global Nf1 knock-out mouse models,
such as Nf1(-/-) is prenatal lethal due to cardiomyopathies and
the Nf1 heterozygotic mouse Nf1(-/+) mice does not develop
any skeletal abnormalities. Nf1(ob-/-) mice allows us to study
the effect of Nf1 mutation in osteoblast. In this model, the Nf1
gene has been knocked-out using the Cre-LoxP system under
the control of 2.3 kb collagen1-alpha1 promoter (Col11), which
is primarily expressed in osteoblast [23,25]. Our current view
of the NF1 bone pathology, based on the analysis of osteoblast
function, whether the imbalance of bone homeostasis and
improper response of osteoblast cell to mechanical stress
cause the NF1 skeletal manifestations [26-35]. 

The NF1 dystrophic skeletal pathologies, including the
progressive sphenoid wing dysplasia (SWD), are associated
with functional disability and changes in bone shape for which
treatment or prevention is not available [1,36,37]. This
highlights the dearth of knowledge related to NF1
pathophysiology in bone. We conducted this study to
understand how ablation of NF1 in osteoblasts will affect their
function in response to mechanical stress. Several Nf1 mouse
models have been developed to study cancer and bone
abnormalities [38]. Initially, studies focused on generation of
mice with a targeted mutation in Nf1 gene. Then the next
generation models focused on exon-specific knock-out mice.
However recently tissue-specific Nf1 gene knock-out has
shown the function of neurofibromin in specific cell types.
Here we isolated osteoblasts from mice in which Nf1 gene has
been deleted using 2.3 collagen1-alpha1 promoter (Col1),
which is expressed mainly in osteoblasts [23,25]. Unlike
ablation of Nf1 in osteo-chondroprogenitor, these cells
allowed us to study the effect on osteoblast function. In regard
of RAS-GAP and Nf1, constitutively active RAS and its
downstream kinase ERK1/2, are thought to underlie NF1
skeletal manifestations [23,24,39]. In the experiments
presented here, osteoblast cells from Nf1(ob-/-) produce little
mineralized matrix when growing in an osteoinductive
medium (OIM) compared to NF1(WT) cells.

Results and Discussion
This result supports the previous finding of the lack of NF1

in osteoblast resulting in reduced bone mineral density (BMD)
and reduced mechanical properties [40]. Blockade of RAS
protein post-translation modification is shown to prevent its
targeting to the cell membrane and abrogation of its
downstream effects. FTI-277 is an anti-RAS treatment which
prevents RAS isoprenylation [35,41]. We hypothesize that if we
inhibit hyper-active RAS using FTI-277, then the NF1 mutant
osteoblast cell should be able to differentiate normally. We
find that, when treated with 5 µM of FTI-277 in OIM culture
medium Nf1(ob-/-) cells were able to produce more
mineralized matrix. However, the Nf1 (WT) osteoblast cells
treated with 5 µM of FTI-277 produced less mineralized matrix
when compared to untreated cells. This indicates that the level
of RAS signaling is critical not only for osteoblast proliferation
and differentiation but for normal function and matrix
deposition. This is confirmed by the level of RUNX2 expression,
which is known to be phosphorylated by ERK1/2 during matrix
deposition [42,43].

Since we know that RAS-ERK pathway is involved in
mechanical signal transduction [28,44]. We asked what is the
role of NF1 in osteoblast during mechanical stress. Although
different systems have been used to strain osteoblast cells, it is
very difficult to compare in-vitro applied strains with those
applied in-vivo because the characteristics of the strains are
different, i.e. the 3D configuration and presence of interstitial
fluid in-vivo. The Flexcell system has been a good platform to
study the effect of mechano stimulation in many different
contexts [45,46]. This system applies an equibiaxial strain to
the cells using a flexible silicone bottom plate connected to a
computer-controlled vacuum device. In the literature a wide
variety of parameters have been used (i.e. the magnitude of
stretch, the frequency of stretch and the duration of stretch, to
mechanically stimulate different cell types). In terms of bone
cells, there is a general concordance that the frequency is
more important than the magnitude of stretch applied and 2%
to 4% elongation is found to be enough to initiate osteoblast
cellular response. At higher magnitudes (i.e. 10% to 12%) it is
reported to be lethal to the cell [20,45]. In this study, we used
the Flexcell system to apply a mechanical strain to Nf1 (ob-/-)
and Nf1(WT) at (10 cycles per minute (0.16 Hz) for 24 h and 3%
elongation). We found, in terms of protein expression that
RUNX2 showed lower expression level in Nf1(ob-/-) upon
mechanical stretching compared to non-stretched control
cells. However, the opposite was found in Nf1(WT) cells with
RUNX2 expression level increased with stretching in Nf1(WT)
cells. Also we tested the downstream effects of stretching on
mineralized matrix formation. It has been shown that
mechanical stimulation leads to increased matrix deposition
[32,47].

Conclusion
Our results showed, Nf1(ob-/-) cells upon mechanical

stimulation were unable to responded normally and unable to
form more matrix compared to Nf1(WT). Nf1(ob-/-) cells
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deposit less matrix when mechanically stimulated compared
to non-stressed Nf1(ob-/-) cells. This potentially explains why
NF1 patients have defective bone healing process and also
why the skeletal lesions show a progressive nature. Bone
tissue is continually being remodeled depending on the
mechanical environment [21], therefore the defective
mechanical transduction signals NF1 osteoblast cells produced
upon mechanical stress are responsible for the abnormal
response to stress. Coupling between bone formation and
resorption and involvement of osteoclasts in this process (in
vivo) may direct future studies to determine the response of
osteoclast cells in NF1 to mechanical stimulation as this might
bridge the gap and help to understand the cellular events
leading to skeletal abnormalities in NF1 patients [48].
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