Available online at www.pelagiaresearchlibrary.com

Pelagia Research Library

Asian Journal of Plant Science and Research, 2014, 4(5):20-27

Macrophytic species composition of five wetlands of Sonitpur district of Assam, India

Sarada K. Sarma and Bidhan Borah

Plant Ecology Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India

ABSTRACT

The Sonitpur district is situated between 26° 30'N to 27° 02'N Latitudes and 92° 17'E to 93° 47'E Longitudes in the northern bank of river Brahmaputra covering an area of 5255.2 km² (492145 ha) that accounts for 6.27% of the geographical area of the state. The five wetlands of Sonitpur district of Assam, India, were surveyed for their floristic compositions during the period of 2009 to 2011. The aquatic macrophytic species of these areas were documented. 213 plant species were recorded under 141 genera and 55 families from the wetlands. Family Poaceae contains maximum number of species followed by Cyperaceae and Asteraceae. Moist soil species (Ms) were found to be dominating habits followed by rooted emergent hydrophytes (Reh) and ecotone species (Eco). The most common life forms included geophytes (geo) hydrophytes (hydro) and chamaephytes (chamae).

Key words: Wetlands, macrophytes, dominant, habit, life forms.

INTRODUCTION

Wetlands are defined as lands transitional between terrestrial and aquatic eco-systems where the water table is usually at or near the surface or the land is covered by shallow water [1]. Wetlands are the most productive ecosystem of the world and provide direct and indirect services to mankind and rest of the organisms. However, irrespective of their obvious positive contributions, wetlands are the first among the victims of modern development and degrading with times [2]. India, with its varied topography and climatic regimes harbours a wide variety of wetland habitats. The majority of the inland wetlands are directly or indirectly dependent on the major rivers like Ganga, Brahmaputra etc. India has recently taken commendable initiatives towards the conservation and management of wetlands and rational utilization of their resources. But unfortunately proper documentations as well as inventory wetland studies has not been done in some regions of India, particularly, in the north eastern part of India, where wetlands are now considered as one of the most threatened ecosystems of the world. Tremendous pressure is exerted on these ecosystems globally, mainly due to the need to find more land for cultivation of crops [3, 4, 5, 6, 7, 8, 9]. Wetlands in India are also increasingly degrading and deteriorating its natural characteristics due to several anthropogenic factors like exponential growth of human population, large scale changes in land use and land covers, industrialisation, urbanisation, unsustainable way of grazing and fishing activities etc.

The state of Assam $(24^{0}8 \text{ N} - 28^{0}2 \text{ N} \text{ and } 89^{0}42 \text{ E} - 96^{0}\text{E})$ falls in the tropical climate belt in the north eastern region of India. The most part of the state has humid, subtropical climatic conditions with heavy rainfall. The state is also known for its rich biodiversity and cultural diversity. In Assam 5097 wetlands (>2.25 ha) and 6081 small wetlands (<2.25 ha) have been identified which encompass 764372 ha that is around 9.74 % of the total geographic area of the state. Of these River/stream types of wetland encompasses 637164 ha accounting majority 84 % of the wetlands followed by lake/pond (51257ha), waterlogged (47141ha) and ox-bow lakes (14173ha).Besides 2833 ha area under man made wetland is also mapped. The climatic condition of Sonitpur district is sub-tropical humid to wet humid during summer and mild cool with foggy condition during winter. Both south-west and northeast monsoons bring rain to this region. Total wetland area in the district is 83427 ha that includes 980 small wetlands (<2.25 ha). River/stream occupies 94.52% of wetlands. The other major wetland type is Waterlogged - natural (2.22%) and Oxbow lakes (1.04%). There are 23 Tank/pond types of wetlands covering 84 ha. Sonitpur is the leading district covering 83427 ha of wetland areas which accounts for 10.9% of the total wetlands areas of the state [10]. Aquatic plant species are dependent on the hydrological regime and geological conditions. In Assam, wetlands are largely regulated by rivers, rivulets and streams, therefore most of the wetlands of the state are found in the close proximity of the rivers and vice versa. But due to the modification of hydrology of rivers mainly due to dykes have severely affected the dynamics of many wetland ecosystems in this part of the country.

The first step in conservation of biodiversity is to assess the diversity of natural resources present and identify those, which are important and most irreplaceable [11]. Wetlands being dynamic and influenced by both natural and manmade activities, need frequent monitoring. Regular updation of the status of the wetlands is all the more significant in view of the accelerating pressure on the very existence of these resources due to developmental activities and population pressure being witnessed currently [2]. So far very few notable works on the ecology of the wetlands of Assam have been reported by earlier workers [12, 13, 14 15, 16, 17, 18 19]. At the same time, no remarkable study has been done yet about the wetlands of Sonitpur district of Assam. Therefore the aim of the present study is to document these invaluable biodiversity rich wetlands through assessing the macrophytic communities and the present habitat conditions prevailing there, so that planning for conservation and management of these wetlands could be taken.

MATERIALS AND METHODS

Study area:

The Sonitpur district is bounded on the east by Lakhimpur district, on the west by Darrang district of Assam respectively and on the north by Arunachal Pradesh and on the south by the river Brahmaputra and Nagaon district of Assam. Along the river Brahmaputra and between the central belt and the Brahmaputra, low land condition prevail some parts of which are chronically flood affected. Swampy areas are seen mainly in these areas which represent naturally depressed vast wetlands constituting a sizable area in this zone. There is a steady fall in the level of the district towards the Brahmaputra, thus the whole of the drainage of the district ultimately finds it way in to the Brahmaputra which flows along the southern boundary of the district. The following five wetlands as described below have been selected for the present study.

Boralimora: This wetland is located between the $26^{0}40'46.99''$ N latitude and $93^{0}3'16.09''$ E longitude. It is an almost closed riverine semi perennial wetland occupies an area of 8ha. The wetland receives water from the river Brahmaputra and Ghiladhari. The wetland is encroached on its two sides by human settlements.

Kauribeel: It is situated between $26^{0}41'20.64''$ N latitude and $93^{0}01'48.18''$ E longitude. It is an ox-bow type, open and perennial wetland covering an area of about 8 ha. This wetland is connected with the river Brahmaputra through another river Ghiladhari. After the construction of dykes on the river Brahmaputra and Ghiladhari the wetland area had been reduced considerably and new human settlements have been created by people evacuated from different nearby areas due to natural calamities.

Raumari: Raumari wetland is situated inside the 6^{th} addition of the Kaziranga National Park and lies between $26^{0}39'46.43''$ N latitude and $92^{0}56'34.43''$ E longitude and covers about an area of 35 ha. It is a large floodplain oxbow, open, perennial and unleased wetland without any noticeable human interference. The main feeder river is Brahmaputra and water from the rivers Ghiladhari and Gabharu also enters the wetland during summer.

Sitalmari: This is an ox-bow type, closed and perennial wetland situated between $26^{0}40'15.70''$ N latitude and $92^{0}59'02.30''$ E longitude. It covers an area about 10ha. The wetland is terminated by dykes and therefore there is no outlet in this wetland. The main feeder river of this wetland is Ghiladhari. Cultivation of seasonal crops around the wetland takes place throughout the year.

Sildubi: It lies between $26^{0}39'55.20''$ N latitude and $92^{0}58'50.70''$ E longitude on the southern side of the district and is adjacent to the Sitalmari wetland. These two wetlands are vertically separated by dykes and the outlet of Sitalmari is interrupted and the inlet of Sildubi is blocked. This construction of dykes has led to the splitting of this wetland into two. It is an ox-bow type, open and perennial wetland. This wetland is located on the bank of the river Brahmaputra and has direct connectivity with the river. It has an area of about 15ha.

An intensive field survey was made during the summer and winter seasons throughout the year in the period of 2010-2013. The coordinates (Latitude and Longitude) of five wetlands of the district have been taken with the help of GPS (Model Garmin etrex). The study was conducted in two ecologically different zones of wetlands viz; water

spread and ecotone zone. The macrophyte species found in the study sites were collected and necessary procedure and precautions were followed to prepare herbarium sheets of collected specimens. The plant species were pressed between the absorbents under varying degree of pressure at regular intervals. Dried specimens were poisoned by Kew mixture (115 gm of mercuric chloride dissolved in 4.5 liter of ethyl alcohol). After the specimens were poisoned, they were dried and affixed on herbarium sheets ($28 \text{cm} \times 42 \text{ cm} \pm 1 \text{ cm}$) by using tread and fevicol glue. Each and every herbarium sheet was numbered and labeled.

The plant specimens were identified with the help of Flora of Assam, Vol. 1-4 [20]; Flora of Assam, Vol.-5 [21]; Flora of British India, Vol. 1-7 [22]; Aquatic Angiosperms, Botanical Monograph [23]; A Mannual of Aquatic Plants [24]; Tropical Grasses [25] and also in the Herbarium of the department of Botany, Gauhati University, Guwahati Assam.

RESULTS AND DISCUSSION

The total numbers of taxa recorded in the five wetlands of the present study were 213 species under 141 genera and 55 families. The most common families were Poaceae, Cyperaceae, Asteraceae, Polygonaceaae, Araceae and Hydrocharitaceae (Table-1). The highest species were recorded in Raumari wetland (135) followed by Kauribeel (111) wetland. The lowest was observed in Boralimora ((94) and Sildubi (94) followed by Sitalmari (95) wetland. The macrophytes of water spread region of the wetlands were classified into five habits or growth forms following Sharma [26] as i) free-floating hydrophytes (Ffh), ii) rooted hydrophytes with floating leaves (Rhfl), iii) submerged floating hydrophytes (Sfh), iv) rooted submerged hydrophytes (Rsh) and v) rooted emergent hydrophytes (Reh), besides ecotone species (Eco) and moist soil species (Ms) were also categorized in the present investigation. The dominant habits were moist soil species (72), rooted emergent hydrophytes (56), ecotone species (51) and free-floating hydrophytes (13). The rooted hydrophytes (7) and rooted submerged hydrophytes (8). Likewise, macrophytes were further categorized into different life forms following Raunkiaer [27]. The most common life forms included geophytes (59) hydrophytes (56) and chamaephytes (55). The phanerophytes were found to be minimum (3) followed by hemicryptophytes (9).

Wetland wise, hydrophytes were recorded highest life forms followed by geophytes and chamaephytes. The highest value of hydrophytes was recorded in Raumari wetland (47) followed by Sildubi (40), Sitalmari and Kauribeel wetland (35). The highest value for geophytes was recorded in Raumari wetland (32) followed by Kauribeel wetland (26). The chamaephytes have found to be highest in Kauribeel and Raumari wetland with 29 numbers each. The lowest life forms were observed in the case of phanerophytes followed by hemicryptophytes. In Boralimora wetland no phanerophtes were observed whereas Kauribeel, Sitalmari and Sildubi wetland each of them have shown one number of phanerophytes (Fig.-1).

Likewise, the moist soil species was recorded as highest in Raumari wetland (46) followed by Kauribeel (39) and Sitalmari wetland (30). The highest number of rooted emergent hydrophytes was recorded in Raumari (34) followed by Sitalmari (26) and Boralimora wetland (25). Similarly, the free-floating (10) rooted submerged (8) and submerged floating hydrophytes (7) were found to be highest in Raumari wetland. In Kauribeel wetland, rooted hydrophytes with floating leaves (6) was recorded as highest growth forms (Fig.-2)

Table 1: Floristic composition of five wetlands of Sonitpur district

 $[1=Boralimora, 2=Raumari, 3=Kauribeel, 4=Sitalmari, 5=Sildubi, \sqrt{=} present, X=absent, chamae = chamaephytes, geo= geophytes, hydro=hydrophytes, helo= helophytes, hemi= hemicryptophytes, phanero= phanerophytes, Eco= ecotone species, Reh= rooted emergent hydrophytes, Ms= moist soil species, ffh=free floating hydrophytes, sfh=submerged floating hydrophytes, Rsh=rooted submerged hydrophytes, Rhfl=rooted hydrophytes with floating leaves, p= perennial A=annual].$

				~				-		
		1	2	3	4	5	Life forms	families	Habits	Life spans
1	Acalypha indica L.		Х	Х	Х	Х	chamae	Euphorbiaceae	Eco	Р
2	Acrocephalus hispidus(L.)Nicols.Et Siva				Х	Х	chamae	Lamiaceae	Reh	Р
3	Aeschnomene aspera L.	Х		Х	Х	Х	chamae	Fabaceae	Reh	Р
4	A. indica L.		Х	Х	Х	Х	chamae	Fabaceae	Reh	Р
5	Ageratum conyzoides L.		\checkmark	Х	Х	Х	chamae	Asteraceae	Eco	Р
6	Alocasia cucullata Schott.				\checkmark	Х	geo	Araceae	Ms	Р
7	A. indica Schott.		Х		\checkmark	Х	geo	Araceae	Ms	А
8	Alternanthera philoxeroides (Mart.)				\checkmark		hydro	Amaranthaceae	Reh	Р
9	A. sessilis (L.) R.Br.ex R&S				\checkmark		hydro	Amaranthaceae	Reh	Р
10	Amaranthus spinosus (L.)			Х	Х		chamae	Amaranthaceae	Eco	Р
11	A. viridis L.		Х		Х	Х	chamae	Amaranthaceae	Eco	Р
12	Amorphophallus companulatus BL.	Х	Х		Х	Х	geo	Araceae	Ms	Р
13	Anisomelis indica (L.) O. Kuntze.	Х		Χ	Х	Х	chamae	Lamiaceae	Eco	A
14	A. ovata R.Br.	Х	Х			Х	chamae	Lamiaceae	Eco	A
15	Aponogeton crispus Thumb.		Х	\checkmark			hydro	Aponogetonaceae	Reh	Р

16	Apluda mutica Linn	X	X		X	X	geo	Poaceae	Ms	Р
17	A varia Hack	X		x	X	X	geo	Poaceae	Ms	P
18	Artimisia embrosides	x	Ń	X	X	x	chamae	Asteraceae	Eco	P
10	Arundinalla hangalansis (Sprang) Druce	v	v	1	v	v	geo	Doncene	Eco	D
19	Arunaineua bengaiensis (Spielig.) Diuce.		<u> </u>	N	<u>^</u>	<u></u>	geo	Poaceae	ECO M-	<u>г</u>
20	Arunau aonax L.	A	V	N	N	N	geo	Poaceae	MS	P
21	Asteracantha longifolia Nees.	Х	X	N	N	Х	chamae	Acanthaceae	Ms	Р
22	Axonopus compressus (Sw.)Beauv.	Х		Х	X	Х	geo	Poaceae	Ms	P
23	Azolla pinnata	Х			Х		hydro	Azollaceae	Ffh	А
24	Bergia capensis L.	Х			Х	Х	hydro	Elatinaceae	Ffh	Р
25	Borreria hispida (L.) K.Schum.	Х	Х	Х		Х	chamae	Rubiaceae	Eco	А
26	Blyza aubertti Rick	X	1	V	x	X	helo	Hydrocharitaceae	Rsh	Δ
20	Carex emiciata Web	1	v	1	v	1	halo	Curpersonan	Eao	A
27		V	A	N	Λ	V	110	Cyperaceae	ECO	A
28	C. muricata L.	Х	X	N	N	Х	helo	Cyperaceae	Ms	A
29	C. tora L.	Х		N	X	Х	chamae	Fabaceae	Eco	Р
30	Cenchrus cillaris L.			Х		Х	geo	Poaceae	Ms	Р
31	Centella asiatica (L.) Urb.	Х	\checkmark	Х	Х	Х	hemi	Araliaceae	Ms	А
32	Ceratophyllum demersum L.	Х					hvdro	Ceratophyllaceae	Sfh	Р
33	C tuberculatum Cham	x	V	V		X	hydro	Ceratophyllaceae	Sfh	р
24	Constantaria thaliatraidas (I_) Prong	v	1	v	1	1	riyaro	Dtaridaaaaa	Mo	D
25	Certaiopieris maticirolaes (L.) Biolig.		v	A V	N	V	geo	Flenuaceae		<u>г</u>
35	Chenopodium album L.	Х	X	Х	N	Х	chamae	Amaranthaceae	Eco	Р
36	Chloris incompleta L.	Х	V	Х	X	Х	hemi	Poaceae	Ms	Р
37	Chromolaena odorata (L.)King& H.Er.	Х		Х	Х	Х	hemi	Asteraceae	Eco	Р
38	Chrysopogon aciculatus Trin.	\checkmark			Х	Х	geo	Poaceae	Ms	Р
39	C. grvllus Trin	X	V	X	X	X	geo	Poaceae	Ms	Р
40	Claoma avandra (I.) I	v	v	v	v	1	chamac	Cannaridaceaa	Fee	Λ
40	C wiggong I	Λ V	Λ V	Λ	Λ V	N	chamae	Cappanuaceae	Eco	A .
41	C. VISCOSA L.	X	X	N	A	N	cnamae	Capparidaceae	ECO	A
42	Clerodendrum viscosum vent.	X	N	N	X	N	chamae	Verbenaceae	Eco	Р
43	Colocasia esculanta (L.) Schott.					\checkmark	helo	Araceae	Ms	Р
44	Commelina benghalensis L.						hemi	Commelinaceae	Ms	Р
45	C. obliqua Ham.				X		hemi	Commelinaceae	Ms	Р
46	Cotula hamisphaaricaWall ex Benth&H	v	Ń	v	x	v	hemi	Asteraceae	Me	P
40	Contra helisphäerica Wan ex. Dennieri	v	2	v	N V	v	ahamaa	Lythraceae	Eao	1
47	Cupnea baisamina Chem.et. Sani.	A	N	A	Λ /	A	cnamae	Lythraceae	ECO	A
48	Cynodon dactylon (L.) Pers.	V	V	X	N	Х	geo	Poaceae	Eco	A
49	Cyperus compactus Retz.	Х		N	V	Х	helo	Cyperaceae	Reh	A
50	C. compressus L.	Х				Х	helo	Cyperaceae	Reh	А
51	C. cyperoides (L.) Kuntze.	Х	Х		Х	Х	helo	Cyperaceae	Reh	А
52	C. digitatus Roxh		X		X		helo	Cyperaceae	Reh	А
53	C. algunas Roxo.	1	v	v	v	v	helo	Cyperaceae	Peh	<u>^</u>
53	C. Etatus E.	v	v		N V		halo	Cyperaceae	Dah	A .
54	C. naspan L.	A	A	N	Λ	N	helo	Cyperaceae	Ren	A
55	C. iria L.	X	X	Х	N	N	helo	Cyperaceae	Reh	A
56	C. pilosus Vahl.	Х		Х	X	X	helo	Cyperaceae	Reh	A
57	C. rotundus L.						helo	Cyperaceae	Reh	А
58	Dactylis glomerata L.	Х		Х	Х	Х	geo	Poaceae	Ms	Р
59	Dactyloctenium aegyptium Willd	X			X	X	geo	Poaceae	Ms	Р
60	Dichrocanhala integrifolia (1 E)Kuntz	v	v	, J	v	v	chamae	Asteraceae	Me	D
<u>21</u>	Digitaria longiflora (Deta) Der-			v	Λ V	A V	chanae	Donooco	Mc	1
01	Digitaria longifiora (Retz.) Pers.	N	Λ	Λ	Λ	Λ	geo	Poaceae	MIS	A
62	D. marginata Link.	X	X	N	X	Х	geo	Poaceae	Ms	А
63	D. sanguinalis (L.)	Х		Х	Х	Χ	geo	Poaceae	Ms	A
64	D. violascens Link.	Х	Х		Х	Х	geo	Poaceae	Ms	A
65	Diplazium esculantum (Retz.) Sw.						hemi	Athyriaceae	Ms	А
66	Dopatrium junceum (Roxh.) Ham	X	X		X	X	chamae	Scrophulariaceae	Eco	Р
67	Drymaria cordata (I) Willd Ex D&C	1	v	v	v	v	hemi	Carvonhyllacaae	Mo	Δ.
6	Eshinophlog og with the text R&S	N I						Deepeer	D -1	A D
68	Echinochioa compressus	V	X	A	A	X	geo	roaceae	Ken	<u>Р</u>
69	<i>E. crus galli</i> (L.) P. Breauv.	X	V	Х	N	V	geo	Poaceae	Reh	Р
70	E. stagnina (Rets) P. Beauv.	Х	Х	Х		Х	geo	Poaceae	Reh	Р
71	Eichhornia crassipes Solms-Laub.						hydro	Pontederiaceae	Ffh	Р
72	Eleocharis atropurpurea (Retz.) Presl.	Х	Х		Х	Х	helo	Cyperaceae	Reh	А
73	Elodea Canadensis Rich Mich	x	x	Ń	x	x	hydro	Hydrocharitaceae	Rsh	P
74	Flausing indigg (L.) Coorth	1	1	v	v	v	1,010	Dogcogo	Mo	۱ ۸
74	Encline matca (L.) Gaettii.	V V	.)				geo	1 Jaceae	IV18	A
/5	Emetia sonchijolia D.C.	X	N	X	X	X	cnamae	Asteraceae	ECO	A
76	Enhydra fluctuans Laur.	X	V	V	X		hydro	Asteraceae	Ms	A
77	Eragrostis atrovirens (Desf.) Trin.	\checkmark		Х		Х	geo	Poaceae	Reh	А
78	E. cilianensis (All.) Lutati.	Х	Х		Х	Х	geo	Poaceae	Reh	А
79	E. gangetica (Roxb.)	X	X		X	X	geo	Poaceae	Reh	А
80	E tenella (L.) P Reauv	J	1	V	X	x	geo	Poaceae	Reh	Δ
01	E. uniloidas (Dotz)Noss or stoud	v	2	1	2	v	500	Donacao	Deh	<u>л</u>
01	L. unitotaes (Ketz.)nees ex steud.		V TZ	N	V T	A	geo	roacede	Refi	A
82	E. oryzaetorum Mart.	X	X	N	X	Χ	geo	Eriocaulaceae	Reh	A
83	E. trilobum Ham.	\checkmark	Х	X	X	Х	geo	Eriocaulaceae	Reh	А
84	E. truncatum Ham.	Х	Х			Х	geo	Eriocaulaceae	Reh	А
85	Festuca rubra L.	Х	Х		Х	Х	geo	Poaceae	Ms	А
96	Figue haterophylla var assamica	x	X	V	X	X	nhanero	Moraceae	Eco	р

87	Fimbristylis aestivalis (Retz.)	V	V	V	V	X	helo	Cyperaceae	Ms	Δ
07	E dishotoma Vahl	v	v	2	v	1	halo	Cyperaceae	Ma	A .
00		A	Λ	V	Λ	V	1 1	Cyperaceae	IVIS	A
89	F. miliacea (L.) Vahl.	Х	N	Х	N	Х	helo	Cyperaceae	Ms	Р
90	F. squarrosa Vahl.	Х	Х		Х	Х	helo	Cyperaceae	Ms	Α
91	Floscopa rivularis	Х	Х		Х	Х	chamae	Commelinaceae	Ms	А
92	Fragaria indica Andrews	X	V	V	X		chamae	Rosaceae	Ms	А
02	Fuirong umballateg Botth	v	v	1	v	v	halo	Cuparagaga	Mo	A
95	Fuirena umbelialea Roub.	Λ	Λ	N	Λ	A	neio	Cyperaceae	IVIS	A
94	Grangia maderaspatana (L.)	Х	V	Х	Х	Х	chamae	Asteraceae	Ms	Р
95	Hedyotis corymbosa (L.) Lamk.		Х	Х	Х	Х	chamae	Rubiaceae	Ms	Р
96	Heteropogon contortus (L.) Beauv ex					V	geo	Poaceae	Eco	Р
07	Hudrilla vartiaillata (1 E) Boulo	1	1	1	1	1	budro	Hydrocharitagaag	Deb	D
97	Hyanna veniciliaia (I.F.) Köyle.	v	Ň	V	V	N	liyulo	Hydrochantaceae	KSII	r
98	Hydrocharis cellulose Buch-Ham.	Х	N	Х	X	N	hydro	Hydrocharitaceae	Reh	A
99	Hydrocotyle sibthorpioides Thumb.						hemi	Araliaceae	Ms	Р
100	Hydrolea zevlanica Vahl.		Х				hvdro	Hydroleaceae	Reh	Р
101	Hyarophila polygnorma (Poyh)T	v	v	1	1	v	hydro	Acenthecese	Doh	D
101	Пудгорний рогузретни (Кохо.)1.	Λ	Λ	Ň	N	Λ	1 1	Acalitilaceae	Reli D 1	I D
102	Hygroryza aristata Nees.	N	N	N	N	N	hydro	Poaceae	Reh	Р
103	Hymenachne acutigluma (Steud.)Gillil.					Х	hydro	Poaceae	Reh	Р
104	H. assamica Hitch.						hvdro	Poaceae	Reh	Р
105	Inomoga aquatica Forsk	N	V	N	V	N	hydro	Convolvulaceae	Reh	Δ
105							1		N	A .
106	1. carnea Jacq.	N	γ	N	N	N	chamae	Convolvulaceae	MS	A
107	Imperata cylindrica (L.) Beauv.	Х	Х		Х		geo	Poaceae	Eco	А
108	Ischaemum hirtum Hack.		Х	Х		Х	geo	Poaceae	Eco	А
109	Isoatas coromandaliana	N	x	x	x	x	hydro	Isoetaceae	Rsh	P
109	Isoeles coromanaellana	v	Λ	A	A V	A V	ilyulo	Isoetaceae	Rsii	1
110	Juncus articulatus L.	Х	N	Х	X	Х	geo	Juncaceae	Reh	A
111	Jussieua repens L.		Х				hydro	Oenotheraceae	Ms	Р
112	J. suffruticosa L.	Х			Х	Х	hvdro	Oenotheraceae	Ms	А
113	Kyllinga hravifolia Rotth	N	V	N	x	N	helo	Cyperaceae	Ms	Δ
113		v	N NZ		X X	v	1 1	Cyperaceae	N15	A .
114	K. monocephala Rottb.	X	X	N	X	X	nelo	Cyperaceae	MS	A
115	Lagenandra ovata(L.) Thaw.	Х	Х	Х	Х		helo	Araceae	Eco	Р
116	Leersia hexendra Sw.	Х	Х			Х	geo	Poaceae	Ms	А
117	Lamna oligorrhiza Kurz	N	V	N	V	N	hydro	Lemnaceae	Efb	Δ
117		, v		Ň	v	N	1 1	Lennaceae	Fill	A .
118	L. polyrrhiza L.	N	N	N	Х	N	hydro	Lemnaceae	Ffh	A
119	Leontodon autumanalis	Х	Х	Х	Х		chamae	Asteraceae	Ms	Р
120	Leucus aspera L.						chamae	Lamiaceae	Eco	Р
121	Limnophila chinansis Osbeck	Y	X	N	x	N	hydro	Scrophulariaceae	Reh	P
121		X	X	v	X X		1 1		D 1	I D
122	L. neterophyla (ROXD.)	Λ	Λ	Λ	Λ	N	nyaro	Scrophulariaceae	Ren	P
123	Lippia javanica (Burm.f) Spreng.	Х	Х	V			chamae	Verbenaceae	Eco	Р
124	Ludwigia adscendens (L.) Hara.		Х			Х	chamae	Onagraceae	Reh	Р
125	L octavalvis laca	V	X	V	X	X	chamae	Onagraceae	Reh	р
125	L. benivitivits saeq.	1	v	v	v	v	ahamaa	Onagraceae	Dah	D
120	L. parvijiora Koxb.	V	Λ	Λ	Λ	Λ	chamae	Onagraceae	Ren	P
127	Marsilea quadrifolia L.	V	V	Х	Х	Х	hydro	Marsileaceae	Rhfl	A
128	Mikania mycrantha Willd.	Х	Х				phanero	Asteraceae	Eco	А
129	Mimosa pudica L			V			chamae	Mimosae	Eco	А
120	Manaaharia haatata (L) aalma Lauh	1	1	1	1	1	budno	Dentadariagona	Dah	D
150	Monocharia hasiaia (L) sonns-Laub.	V	V	N	N	N	nyuro	Politederiaceae	Ren	P
131	M. vaginalis (Burn f.)Presl.	Х	Х	N	Х	Х	hydro	Pontederiaceae	Reh	Р
132	Myriophyllum tuberculatum Roxb.						hydro	Haloragaceae	Rsh	Р
133	Nasturtium officinale R Br	V		V	X	X	chamae	Brassicaceae	Sfh	Р
124	Nontunia prostrata (Lomb) Dollion	v	v	v	1	v	chamaa	Fabaceae	Doh	- D
134		Λ		Λ	N	Λ		1 abaceae	D1 C	Г Г
135	Nymphaea alba L.	V	N	N	N	N	hydro	Nymphaeaceae	Rhfl	Р
136	N. nouchali Burn.fsyn.		\checkmark				hydro	Nymphaeaceae	Rhfl	Р
137	N. stellata Willd.						hydro	Nymphaeaceae	Rhfl	Р
139	Nymphoides cristata (Royh) O Kuptzo	N	Ń	Y	N	v	hydro	Menyanthaceae	Efb	Δ
100	N hadrenhalle	N N7	¥ \$7	<u>Λ</u>	¥ 17	Λ 17	had	Manage 1	1.111	<u>л</u>
139	iv. nyarophyllum	Х	Х	N	X	Х	nydro	wienyanthaceae	Fth	А
140	N. indicum (L) O. Kuntze.	Х	Х	Х		Х	hydro	Menyanthaceae	Ffh	А
141	Oenanthe javanica (BL.) DC.	Х					hydro	Araliaceae	Ms	Р
1/2	Onhiuros meganhvilius Stanf	v	v	v	N	v	geo	Poaceae	Eco	P
142	Optimitos megupinyuus stapi.		A V	<u>^</u>	v	<u>^</u>	geo	Deserve	M	1
143	Opusmenus burmannu (Retz.)P.Beauv.	X	X	N	X	N	geo	roaceae	MS	А
144	Oryza officinalis Wall.			X		X	geo	Poaceae	Reh	A
145	O. rufipogon Griff.			Х	Х	Х	geo	Poaceae	Reh	A
146	Ottelia alismoides (I) Pers	N	1	N	Y	Y	hydro	Hydrocharitaceae	Reh	р
140	Ourlie cominutes (L.) 1 cis.		.)	N N7	.1	71 17	inyuro	Oralist	1.511	1
147	Oxalis corniculata L.	N	N	Х	N,	X	geo	Oxalidaceae	Ms	А
148	O. corymbosa D.C.	\checkmark	\checkmark				geo	Oxalidaceae	Ms	А
149	Paederia scandens (Lour.) Merr.	Х		Х	Х	Х	phanero	Rubiaceae	Eco	Р
150	Panicum brevifolium I	1	Ń	x	٦.	V	helo	Poaceae	Me	Δ
150		-	1	~	-		hala	Doopoor -	N1.5	<u>л</u>
151	r. maximum Jacq.	N	N	N	N	N	neio	roaceae	MIS	А
152	P. paludosum Roxb.	Х	Х	V	X	X	geo	Poaceae	Ms	A
153	P. repens L.		Х	Х	Х	Х	geo	Poaceae	Ms	A
154	Pasnalidium flovidium & Camus	X	X		X	X	geo	Poaceae	Eco	Δ
155	Page alum age action Ded-	1	1	1	1	v	5°°	Donooco	Eac	A .
133	<i>F uspaium compacium</i> Kotn.	V	N	N	N	Λ	geo	roaceae	ECO	A
156	P. orbiculare G.Forst.	Х	Х	X			geo	Poaceae	Eco	A
157	P. scrobiculatum L.		Х	Х	Х	Х	geo	Poaceae	Eco	A

158	Phalaris aquatica Ait	X				X	960	Poaceae	Reh	А
159	Phleum pratense L	X	x	V	x	V	900	Poaceae	Reh	A
160	Phraamites karka (Retz.) Trin ex Steud	X	x	V	X	1	geo	Poaceae	Fco	A
161	Pistia stratiotas I	V	1	1	1	V	hydro	Araceae	Efb	Δ
162	Pog group I	v	v	v	1	v	riyuro	Poncene	Me	<u>A</u>
162	Polycarnon tetranhyllum I	X V	v	N	v	N	bydro	Carvophyllaceae	Me	A .
164	Polycarpon tetraphytiam L.		N V	N	л v	v	ahamaa	Dolygonogooo	Mo	A
164	Polygonum ussamicum Meissii.	N		N			chamae	Polygonaceae	Eas	A
165	P. dabaum L.	N	N	N	N	N	chamae	Polygonaceae	Eco	A
100	P. glabrum willd.	V	V	N	V	V	chamae	Polygonaceae	ECO M-	A
10/	P. sinensis var. sinensis	Λ	A V	N	A V	Λ	chamae	Polygonaceae	M-	A
108	P. nyaro-piper L.	V	Λ.	V	A V	V	chamae	Polygonaceae	M	A
169	P. lapathifolium (L.) S.F. Gray.	X	N	X	X	X	chamae	Polygonaceae	MS	A
170	P. plebejum R.Br.	X	N	N	X	X	chamae	Polygonaceae	Eco	A
1/1	Pontederia cordata L.	X	X	N	N	N	hydro	Pontederiaceae	Rsh	A
172	Potamogeton indicus Roxb.	X	X	N	N	N	hydro	Potamogetonaceae	Rsh	Р
173	P. pectinatus L.	X	X	N	X	X	hydro	Potamogetonaceae	Sfh	Р
174	Ranunculus aquatalis L.var.tricophylls	X	X	N	X	N	hydro	Ranunculaceae	Reh	Р
175	<i>R. scleretus</i> Linn.	Х	Х	X	N	N	hydro	Ranunculaceae	Reh	Р
176	Ricinus communis L.	Х	X	V	V	V	chamae	Euphorbiaceae	Eco	Р
177	Rotala rotundifolia (Roxb.)Koehne.	Х		Х	X	V	chamae	Lythraceae	Eco	Р
178	Rumax maritimus L.		Х	V			chamae	Polygonaceae	Ms	А
179	Saccharum spontaneum L.		Х		X		geo	Poaceae	Eco	А
180	Sacciolepis indica (L.) A.Shase.		Х	Х	Х		geo	Poaceae	Eco	А
181	Sagittaria guayanensis H.B.K.sps.	Х	Х		Х	Х	hydro	Alismataceae	Reh	А
182	S. sagitifolia L.						hydro	Alismataceae	Reh	А
183	Salvinia molesta D.S.						hydro	Salviniacea	Ffh	А
184	Scirpus. articulatus L.				Х		helo	Cyperaceae	Reh	А
185	S. debelis	Х	Х	Х	\checkmark	Х	helo	Cyperaceae	Reh	Р
186	S. grossus L.	Х	Х	Х	Х		helo	Cyperaceae	Reh	А
187	Scoparia dulcis L.		Х	Х	Х	Х	chamae	Scrophulariaceae	Eco	Р
188	Setaria glauca (L.) Beauv.	Х	Х		Х		geo	Poaceae	Ms	А
189	Solanum nigrum L.			Х	Х	Х	chamae	Solanaceae	Eco	Р
190	S. torvum Swartz.						chamae	Solanaceae	Eco	Р
191	Sphenoclea zeylanica Gearth.						hydro	Campanulaceae	Ms	А
192	Spilanthes acmella	Х		Х		Х	chamae	Asteraceae	Ms	Р
193	S. peniculata Wall ex.			Х	Х	V	chamae	Asteraceae	Ms	Р
194	Spirodella polyrrhiza (L.)Schl.			Х	Х	V	hydro	Lemnaceae	Ffh	Р
195	S. punctata(Meyer.) Thompson.	Х	Х			Х	hvdro	Lemnaceae	Ffh	Р
196	Sporobolus diander Beauv.		Х				geo	Poaceae	Ms	Р
197	Stelleria media (L.) Vill.	X		X	Ń	X	helo	Carvophyllaceae	Ms	P
198	Tabernaemontana divaricata (L.) R.Br.	X	V	Х	X	Х	chamae	Apocynaceae	Eco	Р
199	Tephrosia vogelii Hook, f	X	X	Х		Х	chamae	Fabaceae	Ms	Р
200	Thysanolaena maxima Kuntze	X	X	X	X	V	960	Poaceae	Ms	P
201	Trapa hispinosa Roxh	X		X		Ń	hydro	Tranaceae	Rhfl	A
202	T natans L		V		Ń	Ń	hydro	Trapaceae	Rhfl	A
202	Typha angustata Bory & Chaub	x	x	V	J	J	helo	Typhaceae	Ms	A
203	T elephantina Roxb	X	x	1	ÿ	x	helo	Typhaceae	Me	Δ
204	Tunhanium trilahatum (L.) Sahatt		N V	v	A N	л V	helo	Aroaaaa	Eao	A
205	I yphonum in uobuum (L.) Schott.	v			v	A V	chamae	Lirticaceaa	Eco	Δ A
200	Utricularia auroa Lour		~	2	1		bydro	Lentibulariaceae	Sfb	Δ A
207		N	v	N	v	N	hydro	Lontibulariaceae	SIII	A
208	U. Ullue L. Vallion originatia I	V V		N	Λ 1	N	hydro	Lenuouiariaceae	Dah	A
209	vanisheria spiralis L.	Λ	N	V	N	N	ahamaa	Listiagene	KSII M-	Р'
210	veronica capitata	N V	V	X	N	N	cnamae	Unicaceae	IVIS EC	A
211	woiffia arrniza wimm.	X	X	N	X	N	nyaro	Lemnaceae	FIN	A
212	Aantnium strumerium L.	N V	N	N	N	N	cnamae	Asteraceae	ECO	A
213	<i>Xyris indica</i> L.	X	N	N	Х	Х	geo	Ayridaceae	Sth	А

Figure- 1: Pi diagram showing the composition of life forms of aquatic macrophytes of five wetlands of Sonitpur district

Figure- 2: Pi diagram showing the composition of habit of aquatic macrophytes of five wetlands of Sonitpur district

CONCLUSION

The study revealed that the species composition in the five wetlands of the present investigation depend on the size and structure, hydrology and extent of disturbance in the wetlands or in other words healthy existence of the wetland habitats is the prime factor for the development of important niches for the growth of different aquatic plant species in wetlands. The role of ecotone zones is also found to be significant in regulating the species compositions in the wetlands of present study. This was clearly observed in the case of Raumari and Kauribeel wetlands. These two wetlands, particularly the Raumari wetland is found to be bigger in size, better hydrological conditions and lesser amount of underlying disturbances in comparison to the other wetlands of the present study. Similar findings were also reported earlier where the water level was the main factor in controlling the species composition in the aquatic ecosystems. In such ecosystems, variations in water level may affect species composition [28]. The wetlands like Raumari and Kauribeel which have contained water for a considerable period of time of the year and possessed wider, less disturbed ecotone region, where edge effect of three environmental domains i.e. water, land and moist conditions played a significant role in better regulation of these wetland habitats. This also created environmental heterogeneity in the form of spatial variation in those wetland habitats. The heterogeneous habitats provide more niches and diverse ways of exploiting the environmental resources, and thus increase the species diversity, which is also reported earlier by workers [29, 30]. But despite of having large size and uniform periodic hydroperiod, wetlands like Sildubi and Boralimora wetlands have not been able to shown higher level species composition because of either high rate of sedimentation, and degraded ecotone regions or excessive biotic interferences in these wetlands. These wetlands were also affected by the dykes as these wetlands are bounded by dykes. These wetlands are infested by excessive growth of exotic macrophytes like *Eicchornia crassipes* and *Ipomea carnea*. When the ecosystems become more degraded the invasive species increase [31]. It is known that, especially in highly productive ecosystems like wetlands and river systems, species diversity can be maintained only when some species are eliminated regularly [32]. Moreover, virtually there were no ecotone regions in wetlands like Sitalmari and Sildubi during the rainy season as these wetlands were bounded immediately by highlands. Excessive cultivation in the ecotone regions during the post monsoon season onwards might also be a reason for poor species compositions in these wetlands. Human activities such as agriculture or flood control lead to a decrease in wetland area or change the hydrological regime of areas. In this case dykes in the area of study have an influence on the hydroperiod and can change the distribution of wetlands.

REFERENCES

- [1] W.I. Mitsch, I.G. Gosselink. Wetlands, Van Nostard Reinhold, New York, 1986.
- [2] S. Panigrahy, T.V.R. Murthy, J.G. Patel, T.S. Singh. Current science, 2012, 102 (6), pp 852-856.
- [3] Nema, The National Environment (Wetlands, Riverbanks and Lakeshores Management) Regulations, 2000. The Uganda Gazette, vol. XCIII. Nema, Kampala, Uganda, **2000**.
- [4] Nema, State of Environment Report for Uganda. Nema, Kampala, Uganda, 2001.
- [5] A.H. Harcourt, S.A. Parks. Biol. Conserv., 2003, 109, pp 137-149.
- [6] Z. Xie. Biodivers. Conserv. 2003, 12, pp 65-72.
- [7] B. Miller, W. Miller, R.P. Conway, C. Reading, D. Wemmer, D. Wildt, S. Kleman , A. Monfort, B. Rabinowitz,
- M. Armstrong, Hutchins. Conserv. Biol., 2004, 18, pp 86-97.
- [8] B.P. Mishra, O.P. Tripathy, R.S. Tripathy, H.N Pandey. Biodivers.Conserv., 2004 13, pp 421-436.
- [9] K. James, S. Paul. African Journal of Ecology, 2007, 45 (suppl.1), 28-33
- [10] National Wetland Atlas, Assam. Sponsored by Ministry Of Environment and Forest, govt. Of India; as a part of the project on National Wetland Inventory and Assessment (NWIA); Space Application Centre (ISRO), Ahmedabad and Assam Remote Sensing application Centre, Guwahati, **2010**.
- [11] B. Groombridge, M.Jenkins. Freshwater Biodiversity: A Preliminary Global Assessment. Cambridge, United Nations Environment Programme-World Conservation Monitoring Centre, World Conservation Press, **1998**.
- [12] G. Satyanarayana. Bull. Bot. Surv. Ind., 1962, 4, pp 217 218.
- [13] P.P. Baruah. Ann. For., 2003, 11(1), pp 27 36
- [14] R. Gogoi. Ph.D. Thesis, Gauhati University, Guwahati, Assam, 2006.
- [15] G. Kalita.. Ph.D Thesis, Gauhati University, Guwahati, Assam, 2008.
- [16] S.K. Sarma, M. Saikia. Indian Journal of Traditional Knowledge, 2010, 9(1), pp 145-151.
- [17] R. Dutta, B. Baruah, S.K. Sarma. Annals of Biological Research, 2011, 2(4), pp
- [18] S.K. Sarma, U. Deka. Annals of Biological Research, 2014, 5 (5), pp 77-84
- [19] B. Borah, S.K. Sarma. Journal of Advance plant Sciences, 2012, 6 (5 & 6), pp 91-101.
- [20] U.N. Kanjilal, P.C. Kanjilal, A. Das. Flora of Assam, Vols I-V, Calcutta, 1934-1940.
- [21] N.L. Bor. Flora of Assam, Vol.5, Botanical Survey of India, Calcutta, 1940.
- [22] J.D. Hooker. Flora of British India. Vols 1-7, London, 1872-1897.
- [23] K. Subramanyam. *Aquatic Angiosperms, Botanical Monograph* (No.3): A systematic Accounts of Common Indian Aquatic Angiosperms, Botanical Survey of India, Calcutta, **1962**.
- [24] F.C. Fasset. A Mannual of Aquatic Plants, Magrohill Book Company, New York and London, 1940.
- [25] P.J. Skerman, F. Riveros. *Tropical grasses*, Food and Agriculture Organization of the United Nations. Scientific Publishers, Jodhpur, India, **1990**.
- [26] P.D. Sharma. *Ecology and Environment*, 11th revised edition, Rastogi Publications, Meerut, **2013**, pp 74-75.
- [27] K.N. Bhatia. A treatise on Plant Ecology, Pradeep Publications, Janadhar, 1999, pp 209-211.
- [28] L. Naselli- Flores, R. Barone. Hydrobiologia, 1997, 360, pp 223–232.
- [29] F.A. Bazzaz. *Ecology*, **1975**, 56, pp 485-488.
- [30] G.H. Simpson. Nature, 1949,163, 688.
- [31] J.K. Cronk, M.S. Fennessy. *Wetland Plants*: Biology and Ecology, Lewis Publishers, United States of America, 2001.
- [32] K.V. Looy, O. Honnay, B. Bossuyt, M. Hermy. Journal of Botany, 2003, 136(2), pp 97-108.