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ABSTRACT
Contemporary data analytics applications on graphs
frequently operate on domains where graph topology is not
known a priori, and hence its determination becomes part
of the problem definition, somewhat than serving as prior
knowledge which aids the problematic solution. Part III of
this monograph starts by a comprehensive account of ways
to study the pertinent graph topology, reaching from the
humblest case where the physics of the problem previously
suggest a likely graph structure, through to general cases
where the graph structure is to be learned from the data
experiential on a graph.
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INTRODUCTION
A specific emphasis is placed on the use of standard

“relationship measures” in this context, counting the correlation
and exactness matrices, together with the ways to combine
these with the obtainable prior knowledge and structural
circumstances, such as the smoothness of the graph signals or
sparsity of graph connections. Next, for learning sparse graphs
(that is, graphs with a small number of edges), the utility of the
least total shrinkage and selection operator, known as LASSO is
addressed, along with its graph exact variant, the graphical
LASSO. For wholeness, both alternatives of LASSO are resulting
in an intuitive way, starting from basic principles. An in-depth
elaboration of the graph topology learning paradigm is provided
through examples on physically well-defined graphs, such as
electric circuits, linear heat transfer, social and computer
networks, and springmass systems. We also review main trends
in graph neural networks (GNN) and graph convolutional
networks (GCN) from the perspective of graph signal filtering.
Particular insight is given to the role of diffusion processes over
graphs, to show that GCNs can be unspoken from the graph
diffusion perspective. Given the largely heuristic nature of the
existing GCNs, their treatment through graph diffusion processes
may also serve as a basis for new designs of GCNs. Tensor

illustration of lattice-structured graphs is next considered, and it
is shown that tensors (multidimensional data arrays) can be
treated a special class of graph signals, whereby the graph
vertices reside on a high-dimensional regular lattice structure.
The idea of graph tensor networks then provides a uniting
framework for learning on irregular domains. This part of
monograph accomplishes with an in-dept account of emerging
applications in financial data processing and underground
transport network modeling. By means of portfolio cuts of an
asset graph, we show how domain knowledge can be
meaningfully incorporated into investment analysis. In the
underground transportation example, we demonstrate how
graph theory can be used to identify those stations in the
London underground network which have the greatest influence
on the functionality of the traffic, and proceed, in an innovative
way, to assess the impact of a station conclusion on service
levels across the city. The current availability of powerful
computers and huge data sets is making new opportunities in
computational mathematics to bring together concepts and
tools from graph theory, machine learning and signal processing,
creating data analytics on graphs. Data analytics on graphs is a
comprehensive introduction to generating advanced data
analytics on graphs that allows us to move beyond the standard
regular sampling in time and space to facilitate modelling in
many important areas, including communication networks,
computer science, linguistics, social sciences, biology, physics,
chemistry, transport, town planning, financial systems, personal
health and many others.

CONCLUSION
Graph topologies from a modern data analytics point of view,

and proceed to establish taxonomy of graph networks. With this
as a basis, the authors show how the spectral analysis of graphs
clues to even the most challenging machine learning tasks, such
as clustering, being achieved in an intuitive and physically
expressive way. Aimed at readers with a good grasp of the
fundamentals of data analytics, this book sets out the basics of
graph theory and the emerging mathematical techniques for the
analysis of a wide range of data learned on graph environments.
Data Analytics on Graphs will be a valuable friend and a helpful
friend to all involved in data meeting and analysis irrespective of
area of application.
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