

Kinetics of thermal decomposition of binary complexes of copper and zinc with some biologically important ligand

Nisha Agrawal* and K. C. Gupta

Department of Chemistry, B. S. A. (P.G.) College, Mathura-281004, India

ABSTRACT

The thermal decomposition of some copper and zinc complexes with crotonic acid, furan-2-carboxylic acid, meso-2,3-dimercaptosuccinic acid and sarcosine was studied by thermogravimetry under non isothermal heating conditions. The pyrolysis experiments were performed at heating rate of 10^0 C/min in an inert atmosphere of nitrogen. The kinetic analysis of the thermogravimetric data was performed by using the Coats-Redfern method and J. Zasko method. The results indicate that the values of the kinetic parameters obtained by these different methods agree well.

Keywords: Thermal decomposition; Thermogravimetry; Pyrolysis; Kinetic analysis; Coats-Redfern method; Zasko method.

INTRODUCTION

Thermogravimetry (TG) is one of the oldest thermal analytical procedures and has been extensively used to study the kinetics of decomposition reactions and calculating the kinetic parameters like activation energy (E), order of kinetics of reaction (n), pre-exponential factor ($\log Z$) and entropies (S^*)[1-14]. Thermogravimetric analysis measures weight changes in a material as a function of temperature or time under a controlled atmosphere. Many methods are developed for deriving kinetic data from TG curves. In the present work, kinetic parameters were calculated for some copper and zinc complexes with crotonic acid, furan-2-carboxylic acid and sarcosine using the Coats-Redfern method[15-16] and J. Zasko method[17].

MATERIALS AND METHODS

Material

Crotonic acid (C.D.H.), Furan-2-carboxylic acid (Merck), basic zinc carbonate (Qualigens) and other chemicals of A.R., B.D.H. and Merck were used.

Preparation of binary complexes

The solid complexes of Cu^{2+} and Zn^{2+} with crotonic acid, furan-2-carboxylic acid, meso-2,3-dimercaptosuccinic acid and sarcosine were isolated from the mixture of equimolar solutions of metal nitrates and ligands. The pH of the mixture was adjusted to 7 by adding dilute solution of KOH. The mixture was refluxed in ethanol (15-20 ml) for 3-4 hours on a steam bath. The clear solution gave a solid mass on cooling, which was filtered through G4 glass crucible and washed several times with the mixture of doubly distilled water and alcohol. It was recrystallised to give pure crystal and then dried at 60^0 - 70^0 C.

Thermal measurements

Thermal characterization of complexes was carried out using a thermal analyzer system from shimadzu at a heating rate of $10^0\text{C}/\text{min}$ in an inert atmosphere of nitrogen. The weight variation of sample was recorded as a function of sample temperature.

RESULTS AND DISCUSSION

The complexes formed are stable at room temperature. The elemental analyses were satisfactory, show that the complexes have a metal to ligand ratio of 1:1. (Table-1)

Coats and Redfern Method

In the reaction $aA(s) \xrightarrow{\text{---}} bB(s) + cC(g)$ the rate of disappearance of A may be expressed by :

$$\frac{d\alpha}{dt} = k(1 - \alpha)^n \quad (1)$$

where α = fraction of A decomposed at time 't', n = order of reaction, and k = rate constant

given by the expression

$$k = Ae^{-E/RT} \quad (2)$$

where A = frequency factor, and E = activation energy of the reaction.

For a linear heating rate $a = \frac{dT}{dt}$ Coats and Redfern used the following relationships.

$$\log F(\alpha) = \log \left[\frac{1 - (1 - \alpha)^{1-n}}{T^2(1-n)} \right] = \log \frac{AR}{aE} \left[1 - \frac{2RT}{E} \right] - \frac{E}{2.3RT} \quad (3)$$

When $n \neq 1$ and

$$\log F(\alpha) = \log \left[\frac{-\log(1 - \alpha)}{T^2} \right] = \log \frac{AR}{aE} \left[1 - \frac{2RT}{E} \right] - \frac{E}{2.3RT} \quad (4)$$

when $n = 1$

In order to determine the kinetic parameters of the thermal decomposition of complexes the value of the function $F(\alpha)$ was calculated for the assumed reaction orders $n = \frac{1}{2}, 1, 2, 3$. Thus a plot of either $\log [1 - (1 - \alpha)^{1-n}/T^2(1-n)]$ against $1/T$ when $n \neq 1$ or $\log [-\log(1 - \alpha)/T^2]$ against $1/T$ when $n=1$ should result in a straight line of slope $E/2.3R$ for the correct value of n . Activation energies and reaction orders calculated from the thermogravimetric data for the decomposition of complexes are presented in table 2.

In order to verify the determined activation energies the J. Zasko method was employed.

J. Zasko Method

The trial and error method of Doyle was modified by Zasko employing the standard deviations in the calculation instead of curve fitting procedure. Doyle's equation for thermogravimetric curves is

$$g(\alpha) = \frac{ZE}{Rq} \cdot P(x) \quad (5)$$

where $g(\alpha)$ is a certain function of α , where α stands for the fraction of initial compound reacted, Z = frequency factor, E = activation energy, R = gas constant, q = heating rate. $P(x)$, the value of integral

$$P(x) = \frac{e^{-x}}{x} - \int_x^{\infty} \frac{e^{-u}}{u} \cdot d\mu$$

where, $\mu = E/RT$

The main difficulty in this method is that application of this equation as $P(x)$ depends both on temperature and activation energy.

The value of α is determined by

$$\alpha = \frac{W_0 - W}{W_0 - W_t} \quad (6)$$

where W , W_0 , W_t are the actual, initial and final weight of the sample respectively. The values of $g(\alpha)$ may be calculated for various values of 'b' (order of decomposition) in a general equation

$$\frac{d\alpha}{dt} = K(1 - \alpha)^b \quad (7)$$

where values for 'b' are considered as 0, 1 and 2

when

$$b = 0 : g_0(\alpha) = \alpha \quad (8)$$

$$b = 1 : g_1(\alpha) = \ln(1 - \alpha) \quad (9)$$

$$b = 2 : g_2(\alpha) = \frac{\alpha}{1 - \alpha} \quad (10)$$

If the logarithm of equation (1) is taken then

$$\log \frac{ZE}{Rq} = \log g(\alpha) - \log P(x) = B \quad (11)$$

The values of integral

$$P(x) = \frac{e^{-x}}{x} - \int_x^{\infty} \frac{e^{-u}}{u} \cdot du \quad (12)$$

were calculated and tabulated by Doyle for 'x' values covering a range from 10 to 50 and these values were used in calculating 'B' in equation (7)

$$B_0 = \log g_0(\alpha) - \log P(x) \quad (13)$$

$$B_1 = \log g_1(\alpha) - \log P(x) \quad (14)$$

$$B_2 = \log g_2(\alpha) - \log P(x) \quad (15)$$

The $-\log P(x)$ were taken corresponding to over a range of 10 to 24 E values.

The average of 'B' values as obtained at different values of E and at different temperature was taken and their ' δ ' values have been determined employing the relation for standard deviation

$$\delta = \sqrt{\frac{(B_1 - \bar{B})^2}{r}} \quad (16)$$

Where ' B_1 ' is any value, ' \bar{B} ' is the arithmetic mean, 'r' is the number of values.

The ' δ ' values at a particular temperature is minimum for a particular 'b' value i.e. the apparent reaction order using interpolated $-\log P(x)$ at each temperature, the ' δ ' values have been calculated for E values in a close range.

The correct value for E_a gives minimum ' δ ' value at the particular 'b'.

The apparent frequency factor 'Z' is calculated by the equation

$$\log Z = \bar{B} + \log Rq - \log E \quad (17)$$

And the apparent activation entropy as

$$S^* = 2.303 \log \frac{Z_h}{K_T} \quad (18)$$

The value of T is taken as temperature ($T_{1/2}$) at which the weight loss is half of the total weight loss during the considered step.

Table 1 – The analytical data of ligand and its complexes

Compound	Mol. Wt.	Analytical data (%) Found (calculated)				
		C	H	N	S	M
CA	86.09	54.72 (55.45)	6.42 (6.96)	-	-	-
Sarcosine	89.09	41.23 (40.40)	7.12 (7.85)	15.03 (15.71)	-	-
2-FCA	112.08	52.78 (53.53)	4.12 (3.56)	-	-	-
DMSA	182.22	27.45 (26.34)	3.89 (3.29)	-	34.56 (35.18)	-
Cu-CA	149.63	32.81 (32.07)	3.85 (4.01)	-	-	41.82 (42.46)
Cu-Sarcosine	152.63	24.12 (23.58)	4.93 (4.58)	8.52 (9.17)	-	42.28 (41.63)
Zn-CA	151.46	32.03 (31.69)	3.42 (3.98)	-	-	43.93 (43.16)
Zn-2-FCA	177.45	34.06 (33.81)	1.98 (2.25)	-	-	35.89 (36.84)
Zn-DMSA	247.59	18.61 (19.39)	2.89 (2.43)	-	26.48 (23.90)	27.45 (26.40)

Table 2 – Kinetic parameters of complexes

Studied Complexes	Studied Method	Order of Reaction	E (kcal/mol)	log Z	S*(eu)
Cu-CA	Zasko	1	20.00	10.2087	-6.47
	Coats and Redfern	1	22.88	-	-
Cu-Sarcosine	Zasko	2	22.00	11.6402	-3.17
	Coats and Redfern	2	22.80	-	-
Zn-CA	Zasko	1	10.00	6.6198	-14.12
	Coats and Redfern	1	9.15	-	-
Zn-2-FCA	Zasko	2	18.00	9.1029	-8.97
	Coats and Redfern	2	14.64	-	-
Zn-DMSA	Zasko	2	12.00	6.3791	-15.12
	Coats and Redfern	2	8.79	-	-

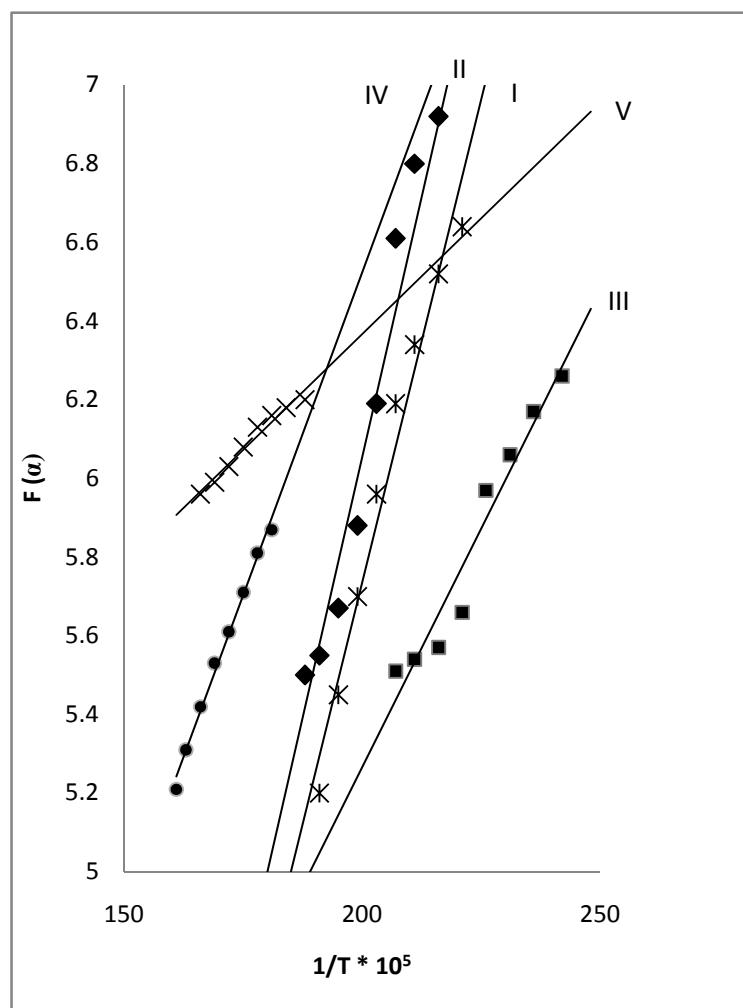


Fig. 1- Plot of $F(\alpha)$ vs. $1/T$, I = Cu-CA complex, II=Cu-Sarcosine complex
III=Zn-CA complex, IV=Zn-FCA complex, V=Zn-DMSA complex

CONCLUSION

Activation energies and reaction orders for the decomposition of complexes calculated from the thermogravimetric curves using the Coats-Redfern method and J. Zasko method show satisfactory agreement.

Acknowledgement

The authors thank Dr. Virendra Mishra, Principal, B.S.A. College, Mathura for providing necessary facilities and to CSIR Delhi for providing Junior Research Fellowship (JRF) to N.A.

REFERENCES

- [1] I. T. Ahmed, *Spectrochim Acta A Mol Biomol spectroso*, **2006**, 63, 416.
- [2] I. T. Ahmed, *Spectrochim Acta A Mol Biomol spectroso*, **2006**, 65, 11.
- [3] E. R. Souaya, E. H. Ismail, A. A. Mohamed, N. E. Milad, *Journal of thermal analysis and calorimetry*, **2008**, 95, 253.
- [4] M. M. H. Khalil, E. H. Ismail, S. A. Azim, E. R. Souaya, *Journal of thermal analysis and calorimetry*, **2010**, 101, 129.
- [5] Min Jiang, Jun Li, Yong-qian Huo, Yun Xi, Jun-feng Yan, and Feng-xing Zhang, *J. Chem. Eng. Data*, **2001**, 56, 1185.
- [6] U. El-Ayan, I. M. Kenawy, Y. G. El-Reash. *Spectrochim Acta A Mol Biomol spectrosc*, **201**, 78, 1429.
- [7] K. M. Ibranim, R. R. Zaky, E. A. Gomaa, M. N. El-Hady, *Research Journal of Pharmaceutical, Biological and Chemical sciences*, **2011**, 2, 391.
- [8] E. Canpolat, M. Kaya, *J. Coord. Chem.*, **2002**, 55, 1419.

- [9] P. S. Mane, S. M. Salunke, B. S. More, *E-Journal of chemistry*, **2011**, 8, S245.
- [10] S. Rajaei, S. Ghammamy, K. Mehrani, H. Sahebalzamani, *E-Journal of chemistry* **2010**, 7, S278.
- [11] H. Sahebalzamani, S. Ghammamy, K. Mehrani, F. Salimi, *Der Chimica sinica*, **2010**, 1(1), 67.
- [12] S.I. Habib, M.A. Baseer, P.A. Kulkarni, *Der Chimica sinica*, **2011**, 2(1), 27.
- [13] D.R. Pandya, J.J. Vora, *Der Chimica sinica*, **2012**, 3(2), 421.
- [14] M. Maru, M.K. Shah, *Der Chimica sinica*, 2012, 3(2), 481.
- [15] A. W. Coats, J. P. Redfern, *Nature (London)*, **1964**, 201, 68-69.
- [16] S. Gopalkrishnan, R. Sujatha, *Der Chimica sinica*, **2011**, 2(5), 103.
- [17] C. D. Doyle, *J. App. Polymer Sci.*, **1961**, 5, 285.