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Description
One in two cancer patients are routinely treated with

radiotherapy, using a linear accelerator to deliver the radiation
dose. Conventionally, a treatment meets guidelines when the
tumour is uniformly irradiated, but the surrounding normal
tissue is avoided [1]. However, our recent study upsets this
radiation therapy “dogma” [2]. We have shown that a
radiation field with many high dose gradients may have an
advantage over a uniform field [2], because it is more lethal to
cancer cells than to normal cells. We attribute this effect
predominantly to the production, diffusion and response to
radiation induced bystander signals, which is consistent with
previous reports of up to 60% of cell death following
irradiation being attributed to bystander effects [3,4].

The use of a radiation field that delivers a non-uniform dose
with high dose gradients is not new. Spatially fractionated
radiotherapy or grid therapy, delivers radiation through a
collimating grid block or by using the multileaf collimator of a
linear accelerator. This approach creates an alternating peak
and valley dose across the body surface with a spatial period
of a few centimeters. At depth, the dose gradients will smear
out and be reduced. Such fields have been known to allow a
higher dose to the tumour at depth, while sparing normal
tissue at shallower depths. Even though only a limited number
of grid therapy cases are carried out in the clinic today, the
responses have been encouraging with the achievement of a
higher therapeutic ratio [5].

Another technique, which by design incorporates high dose
gradients within the treatment field, is microbeam radiation
therapy (MRT), where the field is created as a composite of
micro-scale beams using an x-ray synchrotron. The medical
beam line of a synchrotron creates non-divergent photon
beams with far higher dose rates than a linear accelerator,
therefore delivering a high dose quickly, while maintaining
dose modulation [6,7]. To date, only in-vitro [8] and in-vivo
animal studies have been performed using MRT, achieving
exceptional therapeutic outcomes with preferential tumour
toxicity and high normal tissue tolerance [9]. The peak dose in
the micro-sized beam is over a hundred times greater than
conventional radiotherapy and the outcomes are difficult to
explain using the conventional dogma of radiation therapy.

The success of MRT has been attributed to the differential
response between tumour and normal tissue, particularly in
their vasculature [10], but this factor does not explain the in-
vitro therapeutic advantages.

Synchrotron facilities are currently not suitable for human
cancer treatment, but it is feasible that the therapeutic
advantages of MRT may in part be translated to the clinic using
new generation linear accelerators. We questioned whether a
radiation field created with linear accelerators, to give the
finest possible collimated beams and therefore high dose
gradients, could achieve a better therapeutic outcome than
the conventional uniform field. By using the high definition
micro-multileaf collimator (HD-mMLC) of a linear accelerator,
where each collimator leaf projects to 2.5 mm at the isocentre,
an alternating open and closed field is created resulting in a
pattern of spatial modulation with a periodicity of 5.0 mm. The
resulting beam modulation is much coarser than the
synchrotron-generated microbeams, but far finer than used in
traditional grid therapy. Even though the HD-mMLC generated
beam characteristics are dosimetrically similar to those of grid
therapy, the target prescription field and rationale for doing so
follows closely to that of MRT.

Recently there has been an increased interest in the
mechanism by which radiation stimulates the release of
cytokines into the tumour microenvironment, which then
induces an immune response [11,12]. In the first instance, the
survival of a cell will depend on the radiation dose received,
which will depend on its spatial position in the radiation field
as a consequence of the dose modulation. However, the
survival pattern will also be affected by cytokines, growth
factors and other metabolites released into the
microenvironment by neighbouring irradiated cells. This effect,
also known as the radiation induced bystander effect has been
reported to be an expression of factors released from cells
upon irradiation and can travel outside the target volume,
giving rise to the observed non-targeted response [13,14].
Bystander responses have been reported to vary depending on
conditions and cell type [15] and can manifest as either a
proliferative or cytotoxic effect [16,17].

In a uniform field, the secretion and diffusion of molecules
leading to bystander effects will have an even distribution.
However, in a highly-modulated field, the released factors are

Commentary

iMedPub Journals
www.imedpub.com

Journal of Nursing and Health Studies

ISSN 2574-2825
Vol.2 No.2:7

2017

© Copyright iMedPub | This article is available from: http://www.imedpub.com/nursing-and-health-studies/ 1

DOI: 10.21767/2574-2825.100014

http://www.imedpub.com/
http://www.imedpub.com/nursing-and-health-studies/


driven as a result of dose gradients and the separate
contributions of radiation and bystander effect can be
discriminated. The biological effects of spatially fractionated
fields for both grid therapy and MRT have been suggested to
involve bystander responses [18,19].

In our study ‘Grid therapy using high definition multileaf
collimators: realizing benefits of the bystander effect’, we
found that spatial modulation of the radiation beam was more
toxic to cancer cells, but had no additional effect on normal
cells, compared to irradiation with a uniform field to the same
average dose. The finest striped field modulation, which
created an array of 2.5mm wide beams at the cell layer, gave a
significant effect, indicating that sharp dose gradients are
important in driving the bystander effect. This finding is
consistent with the synchrotron MRT data, which shows that a
finer modulation of each microbeam leads to a better
therapeutic outcome in tumour suppression [20]. To confirm
that the mechanism behind this effect was indeed the
radiation induced bystander effect, we developed a simple
model based on the assumption that the dose gradients in the
field were responsible for the effects and showed that the
model predictions were consistent with the experimental
results for three human cancer and normal cell lines. The
model will be useful for developing treatment strategies using
fine dose modulation.

These results demonstrate that there is a hidden potential in
the linear accelerator treatments routinely used in most
cancer centres. Fine collimation of the beams can release
cancer-suppressing molecules to increase the effectiveness of
treatments without an increase in the radiation dose. Our
result demonstrates the opportunity to improve the
therapeutic ratio in the clinic, acquiring advantages of MRT
without the need for a synchrotron.
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