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Most of the properties and anomalies describing the behavior 
of water are somehow related to the hydrogen bonded 
(H-bonded) network [1-3]. Albeit the features of H-bonds have 
been investigated and depicted by an impressive amount of 
research, the way in which some external conditions–such as the 
inclusion of ionic species–affect the three-dimensional H-bonds 
arrangement is wrapped up in a high degree of uncertainty.

If, on one hand, the presence of solvated ions cannot be avoided 
even in ultra-pure water samples, on the other hand, the lack of 
scientific consensus about the ion-induced microscopic effects on 
the water structure is representative of the practical challenges 
faced when investigating electrolyte solutions [4,5]. However, the 
indisputable role played by a few atomic charged species both in 
biology (i.e., Na+, Cl–, Mg2+, Ca2+, etc.) [6-8] and in industry (e.g., 
Li+ batteries) [9] requires impelling and massive scientific efforts. 
In fact, besides the well-known Hofmeister series [10], hydrated 
ionic species finely rule the selectivity of cell membranes [6,7], 
being thus responsible of complex processes such as the nerve 
pulse generation. On the other hand, aqueous solutions represent 
the prototype of electrolytic batteries.

In all cases, a subtle balance between electrostatics, quantum 
mechanics (i.e., partial orbital sharing), and thermodynamics 
governs the delicate behaviour of the hydration process. The 
complexity of the problem is witnessed, inter alia, by the fact that 
there is no general consensus on the spatial extent of the effects 
induced by the inclusion of an ion in bulk water [11-13].

Recent ab initio calculations [14] have shown that the presence 
of a chaotrope species such as 𝐶𝑙− does not have any effect on 
the orientation of water dipoles beyond the first hydration shell, 
whereas detectable perturbations–perhaps extremely small and 
unable to affect biological phenomena–have been observed in 
the polarizability of the water molecules at longer distances.

Additionally, the lack of a wide consensus on the typical 
coordination numbers characterizing the ionic first solvation 
shell is thoroughly recorded in the literature [4]. From an 
experimental perspective, the identification of this quantity 
is a very hard task for small ions such as 𝐿𝑖

+ and, recently, new 
ionic radii for this species and for 𝑁𝑎+ have been proposed [4] 
by joining the advantages stemming from Large Angle X-ray 
Scattering (LAXS) and double Difference Infrared Spectroscopy 
(DDIR). In this respect, ab initio Molecular Dynamics (AIMD) 

[8,14] and QM/MM [15] computational techniques have proven 
their reliability in reproducing the ion-induced structural changes 
in aqueous solutions, thus becoming an invaluable tool for the 
characterization of electrolyte solutions at a molecular level.

In particular, it seems that at low-to-moderate concentrations 
the ions may replace water molecules in the aqueous H-bonded 
structure, by following the same ‘‘water rules’’. This example 
proves that classical molecular dynamics may fail in dealing 
with delicate local electrostatic balances and that first-principles 
approaches are necessary not only for a correct microscopic 
characterization of these phenomena but also in order to improve 
the models on which classical force fields rely.

Indeed, although sixty years ago concepts such as kosmotrope and 
chaotrope have been introduced to characterize the perturbation 
produced by a given ion on the H-bond network of water [16,17], 
and notwithstanding the fact that these notions were supported 
by classical molecular dynamics simulations [18-20], they have 
recently been blunted by an AIMD study [21]. Ionic conductivities 
are determined by applying an oriented external static electric 
field to electrolyte solutions. When an external electric field is 
applied, the situation is even tougher.

In the low field strength regime and within the Kohlrausch’s law of 
independent migration of ions (i.e., in the limit of infinite dilution), 
the mobilities of the alkali metal cations are well-established 
and can be easily related to their respective ionic sizes [22] i.e. 
the bigger the cation the larger the mobility. However, at finite 
molarities and for stronger field intensity regimes the overall 
situation may dramatically change. Field intensities of the order 
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of 1 V/Å and even stronger were detected at the atomic sites of 
the water molecules hydrating Na+ and Cl– ions [23], suggesting 
that for moderate-to-intense field strengths more complicated 
phenomena may be relevant in describing the ionic diffusion. 
Moreover, field intensities of about 0.30 V/Å are able to induce 
the molecular dissociation of water and proton transfers along 
the H-bonded network [24-27] via the well- known proteolysis 
reaction:

2 𝐻
2
 ⇌ 𝑂𝐻− + 𝐻

3
𝑂+

This latter process plays a crucial role in many disparate domains, 
from neurobiology to electrolytic batteries and hydrogen-based 
technology [28,29]. Thus, it can be expected that a subtle 
interplay between the two deeply different mechanisms of 
protonic migration, on one hand, and of standard ionic diffusion, 
on the other, rules the complex dynamics of electrolytic solutions 
subjected to intense field strengths.
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