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ABSTRACT

Objective:  Acetylcholinesterase (AchE) is an important
neurotransmitter enzyme that helps in the motitifyhelminth
parasites. In view of functional significance, gresent study was
designed to predict three dimensional (3D) strgctunf
Schistosoma mansoni AchE and study the binding affinity of ten
anthelmintics with the model protein.
Methods; Protein models were generated using Modeller9v10,
taking 2PM8 template protein. PROCHECK, ANOLEA and
ERRAT tools were used to validate the model pratein
Anthelmintics-albendazole (AB2), artemether (ART),
benzimidazole (BZD), diethylcarbamazine (DEC), Imisole
(LEV), mebendazole (MBZ), praziquantel (PZQ), ox&uime
(OXA), metrifonate and phosphonic amides were saidor its
binding affinity against the modeled protein usMglegro Virtual
Docker taking two natural AchE-inhibitors, eserined tetra-
isopropyl pyro phosphamide as a reference drug.il@iym
identification of the lead compound among all tieliands has
also been performed using PharmaGist.
Results: Five model proteins were generated in this presery.
Out of the 5 homology protein models, model proteimber 5
was chosen to be best on the basis of the resultadbus
validation tools used. Ligand binding pockets skedrg CASTp
showed a total 152 pockets with best pocket withaega and
volume 2964.8 and 6480.3A, respectively. Superjposit and
multiple flexible alignments of a random set of 1®,and 3
annotated ligands by the server generated tetpamdpygl pyro
phosphamide, ABZ and MBZ as the lead compounds gsiail
ligands. Superimposition of 3 annotated ligandeaéad MBZ the
best pharmacophore ligand with top score 22.35kiDgcstudies
showed MBZ having the highest binding affinity fmlled by
ABZ and PZQ. Reference drugs showed similar kindffifity
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Introduction

Helminth parasites exhibit diversity
of intercellular signaling molecules. Like
other animals, acetylcholinesterase which
catalyze hydrolysis of acetylcholine (Ach)
neurotransmitter is one of the most
important enzymés Biochemical and
histochemical studies have revealed the
presence of AchE in many helminth
parasites including flatworms. The presence
of choline and choline acetyltransferase, has
also been revealed in many parasitde
importance of AchE and its physiological
role in nerve transmission is well known in
higher organisms, however, it is unexplored
in helminth parasités The motility and
survival strategy of helminths are controlled
by proper neuromuscular coordination
system and any interference to this system
could lead to the paralysis and expulsion
from the host body or even death of the
parasit&. During nerve transmission, AchE
hydrolyzes Ach to choline and acetate at the
synaptic cleft. In trematodes, AchE is found
to be associated with surface teguments and
internal sub-cellular structufésBecause of
its physiological significance, AchE has
been a target of many drugs and poisons,
both natural and synthefic

A large number of drugs and
photochemical have been investigated to see
their interference on AchE activity.
However, most of the earlier motility study
was done by direct observations of their
motility by electronic micromotility meté.
Although, helminth neuromuscular system is
known as analogous to their vertebrate host,
very little is known about its functioning in
helminth parasites which draws attention of

with the model protein.

Conclusion: The present study appears to provide greateransid
about the functioning of AchE d& mansoni and its interaction
with different anthelmintic drugs.

© 2015 British Biomedical Bulletin. All rights resed

the scientific community to develop
anthelmintic drugs which is still an
insufficient and  difficult  proces§

Therefore, in order to know probabilities of
the drug’s efficacy and its mechanism of
action, the present study was designed to
generate then silico 3D structure of AchE
enzyme and to evaluate its binding affinity
with different anthelmintic drugs.

Materials and M ethods

Drugs
The 3D structure of all the 10

anthelmintic drugs viz., albendazole,
artemether, benzimidazole, diethyl-
carbamazine, mebendazole, metrifonate,
oxamniquine, phosphonic amides,
levamisole and praziquantel and two AchE-
inhibitors eserine and tetra-isopropyl pyro
phosphamide were retrieved from NCBI.

Sequence and template retrieval

The FASTA sequence & mansoni
AchE (acc. no. AAQ14321) was retrieved
from NCBI databasé. Basic Local
Alignment Search Tool (BLASTjwas used
for searching sequence similarity. Multiple
sequence alignment was performed by
ClustalW.

Homology modeling

The 3D model protein structure of
AchE was generated by comparative
homology modeling of best template protein
(2PM8_A) using Modellerov18.
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Model validation

Verifications of all the model
structures generated by Modeler9vl0 were
done using several model validation tools

like, PROCHECRK® atomic non-local
environment assessment (ANOLEA)and
joint centre for structural genomics

(JCSGY®. The best refined model was
compared with the template protein by
superimposition through Chiméta

Pharmacophore detection study

The lead compound among the
twelve ligands was generated by
PharmaGigf. The input file (.mol2)

containing all the ligands when submitted to
the server, a list of candidate
pharmacophores sharing the 3D-patterns of
physicochemical features were generated.
The best pharmacophore ligand was chosen
based on alignment scores.

Active site prediction and molecular docking

The refined model protein was
submitted to CASTP to locate the probable
active sites. Docking was performed using
Molegro Virtual Docker and proper bonds,
bond orders, hybridization and charges were
assessed. Ten runs were performed and five
poses returned. Other docking parameters
were set as default.

Results and Discussion

Sequence alignment and homology modeling
The FASTA sequence of
Acetylcholinesterase @& mansoni retrieved
from NCBI has 687 amino acid sequences.
An appropriate template for query sequence
was identified based on E-value, %
sequence coverage and % sequence identity.
The crystal structure of recombinant full
length human butyrylcholinesterase (Chain-
A, pdb ID - 2PM8-A, amino acid 574) was
found to be the best template for the query
sequence in Protein Data Bank with
maximum and total score 338 each, 88%

query coverage, E-value ¥ and
maximum sequence identity 358 Other
pdb hits in BLAST search were rejected
based on their low % sequence identity, less
query coverage and high E-value. The
multiple sequence alignment using ClustalW
is shown below (Fig. 1). No sequence
alignments were observed between the
template and modelled protein up to th&' 66
residue. Similarly, stretches of gap regions
were seen in between the sequences of
template protein and query sequences.
Likewise, the AchE of diverse organisms
was found to share 34% identity and 47%
similarity with ACE-1 of Caenorhabditis
elegans®.

Model 5 has been selected as the best
model based on the amino acid distribution
in Ramachandran plot, mainly in the
disallowed region (Table 1). Only 0.7%
residues were found to be distributed in
disallowed region compared to 1.0, 1.3, 1.7
and 2.6% in model 1, 2, 3 and 4,
respectively. The crystal structure of
template protein showed 0.6% residues in
disallowed region. All the non-refined
models generated by modeler9vl0 were
submitted to ANOLEA which gave a high
score of more than >5000 in all the models.
However, compared to other models, the
refined model showed much better score -
1642 (Table 1) but higher than template
structure (ANOLEA score = -4041).

The Ramachandran plot of the
refined model protein is shown in figure 2.
Out of 687 amino acid residues 475 (78.6%)
were distributed in the most favoured
region. Similarly, 114 (18.9%) and 12
(2.0%) were found in the additional and
generously allowed regions of plot,
respectively. Three amino acids namely,
Serine at 227 and 395 positions and
Asparagine at 395 were found to be
distributed in the disallowed region
contributing 0.5% of the total residues. In
our earlier work we tried to give the 3D
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model structure of PEPCK fromiscaris
suum and Schistosoma mansoni where we
could bring the amino acid distribution to
>90% in the core region of the plat

Structural comparison and superimposition

Root mean squared deviation
(RMSD) is a commonly used matrix to
represent the distance between two objects
which indicates the degree of similarity
between two 3D structures. Lower RMSD
value indicates more similarity between the
structures. In our present  study,
superimposition of template and the refined
model showed RMSD value of 0.661A.
Figure 3 compares the two protein structures
and their superimposition (Fig. 4a).

A large number of deviations were
observed in the loop regions and the amino
acid sequences where the template has no
sequence alignments with the model protein,
mainly in the starting regions of the
sequences (Fig. 1). The enlarged views of
some of the loops were shown in figure 4b.
All the four loops shown in the enlarged
view were made by the model protein
showing deviations from the template
protein structure. Arrow 1 of the fig. 4b is a
loop of 12 amino acid residues starting from
1% to 12" residue of model protein.
Similarly, in a crystal structure of
Drosophila melanogaster®®, some of the
surface loops were found to be deviated by
up to 8 A from their position in the
vertebrate structures. Likewise, the loops
shown by arrow 2, 3 and 4 were made up of
18 (17-34), 44 (48-92) and 7 (174-180)
residues, respectively. The structural
deviations of S mansoni AchE model
protein may be related to the difference of
amino acids with the sequence of template
protein. A phylogenetic tree constructed
from AchE sequences frofchistosoma sp.
and other organisms revealed a distinct clade
which is separate from the AchEs of other

haematobium AchE showed more closeness
other than th&. mansoni AchE*.

Active site prediction and molecular docking
studies

The refined 3D protein structure 8f
mansoni AchE was submitted to the online
CASTp server using its default settings of
1.4A radius which generated 152 numbers of
ligand binding pockets. Out of the 152
binding pockets, pocket number 1&2d 151
were found to be the best sites with the areas
of 2964.8A and 1495.0A and volumes of
6480.3A and 2556.1A, respectively. A
wireframe structural display with red colored
backbone and green (pocket number 152) and
blue colored pocket (no. 151) were shown in
the figure 5. The amino acid arrangements of
the pockets were also shown in the right side
of the figure.

Pharmacophore is the spatial
arrangement of features that is essential for a
molecule to interact with a specific target
receptof’. Six standard pharmacophore
features viz., H-bond acceptor and donor
group, positive and negative ionisable group,
hydrophobicity and their aromatic rings were
taken into consideration for the detection of
lead compound. The first selected
pharmacophore candidate (Fig. 6a) developed
in the present study by multiple alignment of
ten drugs/inhibitors consists of 3 features -
one hydrophobic and two H-bond acceptors
(Fig. 6b). The second pharmacophore (Fig.
6c) candidate and its corresponding multiple
alignment  (Fig. 6d) showed that
pharmacophore model consisted of one
aromatic ring, one H-bond donor and two H-
bond acceptor groups. The third
pharmacophore (Fig. 6e) candidate and its
corresponding multiple alignment (Fig. 6f)
shows that the pharmacophore model consists
of two aromatic rings, one donor, one
acceptor and one positive charged group,

which is the top scoring pharmacophore. It

phyla. Within the cladeS bovis and S has been observed that the 3 ligands
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pharmacophore consisting of MBZ, ABZ and

BZD secured top score (22.35) among all the
alignments (Table 2) indicating MBZ the best

ligand.

Molecular docking has revealed MBZ
having the highest binding affinity with the
modeled protein followed by ABZ and PZQ.
The MolDock and Rerank score of MBZ
were -123.26 and -105.48, respectively with
H-bond score of -4.59. There were 3-H-bonds
having 3.48A, 2.84A and 2.92A bond length
(Table 3). Oxamnaquine was found to form 5
H-bond interactions with the model protein,
while the Rerank score is -76.16 compared to
-105.48 in the MBZ. Lowest binding affinity
was observed in metrifonate with Rerank
score of only -52.2 showing 3 H-bond
interactions. Docking result with the known
inhibitor (eserine and tetra-isopropyl pyro
phosphamide) produced similar binding
affinity with rerank score of about -85 and -
83, respectively (Table 3). The presence of
non-specific cholinesterase and specific AchE
and their inhibition on exposure to drugs like
isSo-OMPA, serine, phenothiazine, piperazine,
and p-rosaniline was detected An suunt”’.
Investigation on acetylcholinesterase activity
of Ascaridia galli and its kinetic properties
revealed inhibition of AchE activity on
exposure of the worm to commercial
anthelmintics drugs piperazine, adipate and
ABZ? Wet lab studies by Alonso-Villalobos
and Martinez-Grueird have shown a
significant inhibition of AchE secretion in
culture  media when the parasite,
Heligmosomoides polygyrus was incubated
with several broad-spectrum anthelmintics
like ABZ, MBZ, LEV, ricobendazole,
morantel or ivermectin (IVM). The inhibition
profile of three form of AchEs (BXACE-1,
BxACE-2, and BXACE-3) of
Bursaphelenchus xylophilus revealed dose-
dependent inhibition of BXACE-1 byo-
pinene, BXACE-3 activity was inhibited by
botha-pinene and limonene whereas BXACE-
2 was not inhibited by either of these

inhibitors®®. Similarly, in-vitro studies with
the commercial anthelmintic PZQ inhibited
the AchE activity up to more than 50% in
fluke parasitd=. buski®.

The H-bond forming amino acids
lying around MBZ was Ser-94, Arg-83 and
Cys-80, respectively (Fig. 7a). Similarly, the
amino acids around the AchE inhibitor,
Eserine and Tetra-isopropyl pyro
phosphamide were Cys-80, Asn-48, Ser-50,
GIn-557, Phe-558 and lle-47, Val-76 and
Phe-554 respectively (Fig. 6,7b). However, it
was surprising to see that all these amino
acids in the active sites mentioned drugs have
also been seen in the predicted active site
(pocket: 152) of the model protein (Figure 5).
Similar kind of work involving inhibitory
activity of tacrine against the AchE revealed
that the binding model of tacrine was found to
sandwich between the rings of Phe-330 and
Try-84 and its aromatic phenyl and pyridine
rings showing parallek-r bond interaction
with the phenyl ring of Phe-330 forming
average distances of 3.4 and 3.6%A
respectively. Likewise, Kapkovaet al*
performed docking experiment to explore the
binding affinity of various synthetic ligands
of bispyridinium type with the homology
modeled AchE enzyme and observed many
interactions liken-n stacking and cation-
contacts with amino acid residues of the
anionic substrate binding site (Trp-84, Phe-
331, and Tyr-334) and the peripheral anionic
binding site (Trp-279). Docking analysis with
two alkaloids namely (+)-
buxabenzamidienine and (+) - buxamidine
isolated from Buxus sempervirens also
showed good interaction with the active site
of human AchE including several other
hydrophobic interactioid Recently, Cheret
al** working on 3D model structure of human
AchE build by using crystal structure of
T. californica AchE and docked with the
AchE inhibitors like Donepezil, Evo9, 10 and
27 showed a good interaction of inhibitors at
the active site of the protein.
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Conclusion

The present study predicts the 3D
homology protein model structure of
Schistosoma mansoni  acetylcholinesterase
enzyme based on the known crystal structure
of full length Human Butyrylcholinesterase,
their probable ligand binding sites and
plausible functional and binding affinities of
ten commercial anthelmintics including two
AchE-inhibitors with the model protein. The
model protein when superimposed with the
template protein results RMSD score 0.661A
indicating less deviations between the two
proteins. Large numbers of loops deviating
from the template protein may be because of
the less sequence similarities (only 35%)
between the two proteins. Therefore, it may
also be suggest that the AchE-inhibitory
activity of different commercial drugs in
helminth parasites may have no effect on
human AchE which has far more different
sequence similarity. Large differences in the

sequences of amino acid may also suggest the

functional differences in both the organisms.
Docking studies showed good binding affinity
with all the ligands forming H-bonds with

almost all the nearby amino acids of the
model protein as predicted by CASTp server.

Based on the rerank score, it can be suggest

that mebendazole showed the highest binding
affinity with AchE followed by ABZ, PZQ
and OXA. Docking result with the known
inhibitor (eserine and tetra-isopropyl pyro
phosphamide) produced similar results with
rerank score of about -85 and -83
respectively. Thus, mebendazole and
albendazole showing more binding affinity
with AchE as compared to the known
inhibitors, eserine and tetra-isopropyl pyro
phosphamide justify their use as broad
spectrum for human and veterinary animals.
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Table 1. Comparative values of Procheck and ANOLEA (E/kTQrss of all the five models
with template protein and the best refined model

Vel Template Model-1 Model-2 Model-3 Model-4 Model-5 e
tools model
C=80.6% | C=80.5% | C=82.8% | C=79.8% | C=81.6% | C=82.6% | C=78.6%
Ramachandran | A=18.2% | A=15.1% | A=13.4% | A=15.9% | A=13.6% | A=14.2% | A=18.9%
plot G=0.7% | G=3.5% | G=2.5% | G=2.6% | G=2.2% | G=2.5% | G=2.0%
PROCHECK D=0.6% | D=1.0% | D=1.3% | D=1.7% | D=2.6% | D=0.7% | D=0.5%
Varify3D 95.67% | 65.70% | 66.86% | 67.73% | 62.21% | 59.01% | 61.34%
ERRAT 87.84 37.14 37.54 37.56 37.30 36.25 70.61
ANOLEA E/KT - 4041 7985 5102 6846 6547 7107 -1642

C = Core region, A = Allowed Region, G = generowslpwed, D = Disallowed region.

Table 2. Table displaying the parts of the main output palggained from an input with all the
twelve drugs/inhibitors

No. of ligand
. No. of
molecules Names of the drug molecules align Features
. features
aligned
Tetra-isopropylpyrophosphamide,
albendazole, artemether, mebendazole, Hvdrophobic and
10 metrifonate, phosphinic amides, 3 z:/cce ior rou 9.900
diethylcarbamazine, praziquantel, porgroup
oxamniquine, eserine, levamisole
Albendazole, benzimidazole, mebendazole, Aromatic, donor
5 . . 3 16.971
oxamniquine, eserine and acceptor
Hydrophobic,
3 Mebendazole, albendazole, benzimidazole 5 donor_, .acceptor, 22.352
positive and
aromatic
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Table 3. Table showing docking score, H-bond and interacimgno acid in the active site of
AchE with all the anthelmintic drugs including twahE-inhibitors

Ligands i AchE (Chain A)

H- . .
MolDock on Interacti Atom Atom A Atom Atom | Amino

(A)

score ons name ID name ID acid

N(7) 4 2.51 | H(1) | 5916 | Thr4s
Albendazole -114.454 | -89.51 | -5 3 N(7) 4 3.04 | H(1) | 6242 | Ala93
H(1) 26 | 3.08 | O(8) | 698 | Glyo1l

0(8) 0 3.44 | H(1) | 6165 Tyr 79

- 0(8) 0 3.53 | H(1) | 5948 | Asn49

Artemether 63.94 47.94 116 4 0(8) 3 592 (1) 6165 Tyr 79
0(8) 4 3.22 | H(1) | 6146 | 1le78

Benzimidazole -67.89 -57.96 | -2.5 1 H(1) 9 2.76 0(8) 4454 | Ser 555
Diethylcarbamazine -79.11 -63.25 1 ;B 1 0(8) 0 3.02 | H(1) 5946 | Asn 48
- ) H(1) 0 3.48 | 0O(8) 713 Ser 94

Mebendazole 1284 | 1054 |, 3 H(1) 2 284 | 0(8) | 620 | Args3
8 ‘ 0(8) 26 2.92 | H(1) 606 Cys 80
] H(1) 13 | 2.71 | O(8) | 4448 | Phe554
Metrifonate -60.577 | -52.20 593 3 0(8) 6 3.17 | H(1) | 10000 | Arg 510
' H(1) 13 | 3.02 | O(8) | 4436 | Pro553

0(8) 0 3.11 | H(1) | 6254 | Gly91

0(8) 0 3.08 | H(1) | 6248 | Asn90

Oxamniquine 89.091 | -76.16 | o . 5 H(1) 40 | 323 | 08) | 678 | Trpss

H(1) 27 | 289 | 0(8) | 368 | Asn4s
0(8) 2 2.88 | H(1) | 6242 | Ala93
Phosphonic Amides | -69.09 | -64.34 | -2.5 1 H(1) 30 | 299 | 08) | 368 | Asn4s

. - 0(8) 1 | 3.45 | H(1) | 1257 | Args3
Praziquantel -9504 -79.28 0.76 2 0(8) 0 2.69 | H(1) 1208 Tyr 79
Levamisole -86.33 -71.53 | -1.5 1 N(7) 1 3.29 | H(1) 6166 Cys 80
0(8) 0 | 341 | H(1) | 5947 | Asn4s

0(8) 1 | 2.87 | H(1) | 5946 | Asn4s8

, - 0(8) 1 | 3.07 | H(1) | 5954 | Sers0
Eserine -108.19 | -84.81 1, 35 6 0(8) 1 | 233 | H(1) | 5958 | Sers50
H(1) | 37 | 3.45 | O(8) | 4470 | GIn557
H(1) | 37 | 3.18 | O(8) | 4481 | Phe558

H(1) | 26 | 268 | O(8) | 363 | lle4a7

Tetra- - H(1) | 25 | 269 | 0(8) | 577 | val76
isopropylpyrophosp | -118.57 | -82.81 4.77 4 0(8) 3 342 | A 6132 Val 76

hamide .

H(1) 28 | 3.49 | 0O(8) | 4448 | Phe 554

The unit of H-bond and docking score in Molegrotia Docker software is an arbitrary unit,
lower the value better is the binding affinity.
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Figure 1. The pairwise sequence alignment between the FASTA
sequences of 2PM8_A and S. mansoni AchE
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Figure 2. Ramachandran plot showing the distribution of amino acid residues
and its’ plot statistics. Arrows showing residues Ser-277, Asn-375 and Ser-395

in the disallowed region

p— E3
2 « I
‘ e I |
| G — Plot statistics
T _.-'_" Residues in most favoured regions [A,B,L] 475 78.6%
L |—. Residues in additional allowed regions [a,b,lp] 114 18.9%
= /‘fwv ;) Residucs in generously allowed regions [~a~b~l~p] 12 2.0%
| ] Residues in disallowed regions 3 0.5%
AN @) Number of non-glycine and non-proline residucs 604 100.0%
Hy 4 Number of end-residues (excl. Gly and Pro) 2
’771,5 —1 Number of glycine residucs (shown as triangles) 34
Number of proline residucs 47
cewgstly, | —
i, Y Total number of residues 687
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Figure 3. Tertiary protein structures - (a) Template and (b) Refined model
protein of AchE of S. mansoni

Figure 4. Superimposition of the protein structures using chimera; (a)
template (red color) and model protein (cyan color), and (b) Enlarged view of
superimposition showing the deviations mainly in the loop regions (yellow
color)
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Figure 5. CASTp result showing the active sites of AchE protein model of S.
mansoni. Only two ligand binding sites, pocket no. 152 (green) and 151 (blue)
were shown with their amino acid residues at their active sites in the right side
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Figure 6. Pharmacophore candidates and its’ corresponding multiple
alignments of ligands. These were computed by PharmaGist on a random
set of 10, 5 and 3 annotated ligands. (a) Showing the lowest scoring
candidate pharmacophore shared by ten AchE binding drugs/inhibitors
(Jmol view), (b) multiple alignments of the ten ligands in thin stick vies of (c)
Showing the second highest scoring candidate pharmacophore shared by
five AchE binding drugs/inhibitors. (e) Showing the top scoring candidate
pharmacophore shared by three AchE binding drugs/inhibitors. Figure b, d
and f showing pivot molecules after multiple alignments of 10, 5 and 3
ligands in thin-stick view of Molegro Molecular Viewer, respectively
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Figure 7. Docking view showing the H-bond interaction between the ligands (a.
mebendazole and b. Eserine) and the model protein AchE. Dotted arrows
showing the H-bonds. Proximity of amino acid residues from ligand is < 4 A

/
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