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Abstract
Vibrio cholerae achieves survival in various saline
environments by a network of different Na+ dependent
transporters, antiporters, and symporters. The most
important transporters for sodium homeostasis are the
sodium-translocating NADH-ubiquinone oxidoreductase
(VC-NQR) and the secondary sodium pumps Vc-NhaA and
Vc-NhaB. It has been difficult to tease out the metabolic role
of Vc-NQR as deletion of this dominant contributor to
aerobic respiration causes distorting growth defects. By
adding L-lactate, we were able to overcome the basic
growth defect of a Vc-NQR mutant [1]. Here, we report the
growth characteristics of various single and double mutants
of V. cholerae lacking these transporters in regards to cation
resistance in different pH environments, in presence and
absence of L-lactate. Overall, Vc-NhaA appears to be
instrumental for sodium transport at pH 7.5 and 8.5 and
lithium at pH 7.5 in concert with Vc-NQR, and essential at
lithium concentrations of 75 mM and higher at pH 8.5
independent of Vc-NQR. In addition, there is some evidence
that Vc-NhaA is able to transport potassium at high pH and
under high potassium pressure.
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Importance
Vibrio cholerae’s cation transporters located in the cellular

membrane are essential to this pathogens survival in various
challenging environments inside and outside of the human host.
Exposing mutants, lacking Vc-NhaA, Vc-NhaB, or Vc-NQR, to
challenging environments elevates our understanding of which
transport proteins confer resilience to specific conditions and
can guide the discovery of new drug targets in this or other
species.

Introduction
Vibrio cholerae causes the epidemiologically relevant disease

cholera, which manifests itself with a severe watery diarrhoea
and can lead to the death of the patient.

V. cholerae is endemic to large parts of Southeast Asia,
including India, China and Indonesia), and Sub-Saharan Africa
[2], but can be found worldwide in estuarine and coastal waters.
Environmental resilience contributes to the life cycle of this
human pathogen and also guarantees the re-occurrence of V.
cholerae as a perpetual, lurking threat to human public health.
The pathogen is remarkable in its ability to survive in a wide
range of saline environments, supported by a plethora of genes
that encode for primary and secondary sodium pumps (Figure
1).

Figure 1: Sodium motive force (SMF) generators located in the
inner membrane of V. cholerae. Generators of SMF present in
V. cholerae N16961 and O395 are shown. Primary Na+ pump,
Nqr and Na+-translocating oxaloacetate decarboxylase (Oad),
generate SMF by direct sodium extrusion. The sodium
extrusion activity of NQR is coupled by the NADH oxidation
and ubiquinone reduction. The sodium extrusion activity of
Oad is coupled by the decarboxylation of oxaloacetate. Na+ (K
+)/H+ antiporters, NhaA, NhaB, NhaC and NhaP and Mrp,
convert proton motive force into SMF and vice versa. NqrA-F,
OadABG and MrpA-F consist of multiple sub-unit proteins.
The asterisk represents the Na+/H+ antiporter family NhaC
that has not yet been characterized biochemically in V.
cholerae.

These pumps maintain a sodium and energy gradient across
the cellular membrane that enables survival in high sodium (and
lithium) environments, energy production, movement, pH
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homeostasis - especially under alkaline conditions, and nutrient
acquisition [3,4]. While the primary sodium pump, NQR, is not
found in Escherichia coli, the secondary sodium pumps NhaA
and NhaB have been extensively studied in E. coli and other
bacteria. Although they all share many comparable properties,
their functionality differs among the different species. For
example in Pseudomonas aeruginosa, NQR functions as a proton
pump [5].

The antiporter NhaA in E. coli (Ec-NhaA) shows highest activity
at pH 8.5 and loses activity below pH 6.5 [6], transports two H+
versus one Na+ or Li+ [7], is preferably expressed at higher
cytosolic sodium conditions dependent of other sodium
pumping systems [8, 9] and is essential against lithium toxicity
[10]. Comparable to Ec-NhaA, the NhaA antiporter of V. cholerae
reveals Na+/Li+ antiport activity that reaches a maximum at a
pH of 8.0 [11]. The expression of Vc- NhaA in an E. coli mutant
lacking nhaA showed restoration of function similar to its wild-
type [12]. In comparison to NhaA, Ec-NhaB antiporters display
less activity and are therefore often termed “housekeeping”
cation exchanger with auxiliary role [13].

Similar to NhaA, NhaB exchanges sodium ions for protons
electrogenically, as three protons versus two sodium ions are
transported [13-15]. Ec-NhaB does not display pH sensitivity
[16]. In contrast, NhaB in Vibrio alginolyticus is pH-dependent
and reaches its activity maximum at alkaline pH [17]. The role of
lithium transport via NhaB-type antiporters is still unclear, but
there is evidence that NhaB extrudes lithium at alkaline pH in
several Vibrio species, including V. cholerae [15] and V.
parahaemolyticus [18], Pseudomonas aeruginosa [19], and also
Klebsiella pneumoniae [20] even if the affinity to Li+ was much
lower.

NQR is a primary sodium pump that is formed by a complex of
six membrane proteins, encoded by nqrA-F [4,21,22], that
accept electrons from NADH and transfer them to the quinone
pool while exporting sodium ions across the membrane. This
process is efficient at pH<7.5 meanwhile there is proposed
leakage of Na+ through the NqrB subunit at pH ≥ 7.5 [23].

Takuda and Unemoto [24] showed that NQR in Vibrio
alginolyticus was unlikely to export lithium because Na+/H+
antiporter mutants were sensitive to lithium but not sodium.
Toulouse et al. [23] proposed that Vc-NQR is able to export
lithium, but similar to the sodium leakage, it generated less of a
transmembrane voltage possibly due to some cation backflow of
the slightly smaller Li+ ions through the B subunit channel of Vc-
NQR at a pH between 6.5 and 9 [23].

Nevertheless, the importance of Vc-NQR on lithium toxicity
remains unclear and we therefore examined the growth
phenotypes of V. cholerae mutants lacking the primary sodium
pump (Vc- NQR) and/or the secondary Na+ pumps, Vc-NhaA and

Vc-NhaB, under different pH and cation concentrations. To
compensate for the general growth defect of the Vc-NQR mutant
[1], we also performed these growth analyses in the presence of
L-lactate.

Materials and Methods

Bacterial strains and culture conditions
Table 1 contains all strains employed in this study.

Table 1: Strains and plasmids used in this study.

Strains Description Source or Reference

V. cholerae

O395N1
O1 classical biotype strain, lacZ−,
Smr Dr. John Mekalanos

ΔnhaA O395N1, ΔnhaA, Smr, This study

ΔnhaB O395N1, ΔnhaB, Smr, This study

ΔnqrA-F O395N1, ΔnqrA-F, Smr, (Barquera, et al. 2002)

ΔnhaA,
ΔnhaB O395N1, ΔnhaA, ΔnhaB, Smr, This study

ΔnqrA-F,
ΔnhaA O395N1, ΔnqrA-F, ΔnhaA, Smr, This study

ΔnqrA-F,
ΔnhaB O395N1, ΔnqrA-F, ΔnhaB, Smr, This study

E. coli

SM10λpir Host for suicide cloning vector
(Miller, Mekalanos,
1988)

 

Plasmid Description Source or Reference

pWM91
Suicide vector, Ampr, oriR6K,
mobRP4 (Metcalf, et al. 1996)

The classical biotype Ogawa strain, V. cholerae strain O395N1,
with partial deletion of ctxA and streptomycin resistance, and its
sodium pump mutant derivative strains were cultured in Luria
broth (LB Lennox; 10 g/L tryptone (Difco), 5 g/L Yeast extract
(Sigma), 10 g/L sodium chloride) or LBB- (non-cationic Luria
broth buffered with 60 mM Bis-Tris propane (BTP)
hydrochloride) and constant shaking at 200 rpm unless
otherwise stated.

It should be noted that without addition of cations, our LBB-
media contains residual cations of 13-19 mM Na+ and 16-21 mM
K+. 100 μg/ml streptomycin, 100 μg/ml ampicillin, 50 g/l sucrose
(BDH), 4 M NaCl, 4 M KCl, 4 M LiCl and 33 mM L(+)− lactic acid
(Alfa Aesar) were used where appropriate (Table 2).

Table 2: Primers used in this study.

GGGGGGGATCCGTGATTAATGGCAAGAAAGTGAG

GACTGACTGACTGACTGACTGACTCATAGGTTTGTCCTTAAATTATG
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AGTCAGTCAGTCAGTCAGTCAGTCTAATCATTTCATAGGCTTTGAAC

GGGGGGAGCTCCGATGGGCCACAGAACTGGATCACAC

GGGGGGGATCCGATCATGATCCGCTCTGCGCTC

AGTCAGTCAGTCAGTCAGTCAGTCCATGATGATTACTCTTTAACTG

AGTCAGTCAGTCAGTCAGTCAGTCTAAATTTCAATTGAAACTGAAAC

GGGGGGAGCTCGCTCTATTTACCTGCCGGTTCCAG

In-frame deletion of nhaA and nhaB in V. cholerae
The gene splicing by overlap extension (SOE) method [25,26]

was used to generate the single mutants ΔnhaA and ΔnhaB, and
double mutant strains, Δnqr/ΔnhaA, Δnqr/ΔnhaB and ΔnhaA/
ΔnhaB, essentially as described earlier [27].

Growth analyses
Individual colonies of the wild-type (WT), the single mutants

ΔnhaA, ΔnhaB, Δnqr and the double mutants ΔnhaA/ΔnhaB,
ΔnhaA/Δnqr, ΔnhaB/Δnqr were grown in 14 × 5 ml LBB- medium
that was adjusted to pH 7.5 and supplemented with 5 µl
streptomycin. The cultures were grown overnight at 37°C for 24
h with vigorous shaking. The cultures where then adjusted to an
optical density at 595 nm (OD595) of 0.5.

For each of the three tested pH, six reagent reservoirs (VWR)
with 10 compartments were prepared with LBB- containing
lactate or without lactate and adjusted to a cation concentration
of 0 mM, 100 mM, 200 mM, 300 mM and 400 mM for NaCl and
KCl, or 0 mM, 25 mM, 50 mM, 75 mM and 100 mM for LiCl. Each
reservoir provided 2 technical replicates. 180 µl of the
appropriate cation broth solution was added into each well of
the appropriate column of eighteen 96-well plates, creating two
technical replicates per plate. 20 µl of cell solution of each strain
was added to the wells of each row.

The plates were lidded and parafilmed before incubation for
24 h at 37°C with shaking. The bacterial growth rates in the
plates were measured with a Biorad plate reader at 595 nm and
after 0 h, 18 h, and 24 h. The experiment was repeated for a
minimum of four times for all pH values.

Statistical analysis
Statistical analysis was performed using GraphPad Prism

Version 6.07. A two-way ANOVA and a subsequent Tukey ’ s
multiple-comparison test were used to evaluate the results. For
all strains, eight to twelve biological replicates, with each having
two technical replicates were analyzed. The threshold for
significance was p<0.05.

Results and Discussion

Overall growth phenotypes of the V. cholerae strains
as a function of cation concentration, pH and lactate

Overall, all tested V. cholerae strains grew best at slightly
acidic conditions (Figure 2), which is not surprising as V. cholerae

contains a complex acid tolerance response that involves
multiple factors, including OmpU, RecO, the cad system, HepA,
GshB, and NhaP-antiporters [28–31] and thus is well equipped
to withstand acidic conditions. At pH 6.5 and 7.5, the wild-type
generally profited from moderate to high cation concentrations
up to 400 mM (NaCl and KCl) and 100 mM LiCl, regardless
whether lactate was present (Figures 2 and 3)

Figure 2: Vibrio cholerae wild-type and mutant strains grown
with constant aeration at 37°C for 24 hours at pH 6.5 with
0-400 mM sodium chloride (panel A), 0-400 mM potassium
chloride (panel B), or 0-100 mM lithium chloride (panel C). In
addition, panels on the right side show strains grown with 33
mM lactate, while panels on the left side are grown without
any lactate. Bars represent means plus standard errors of the
means (SEM).
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Figure 3: Vibrio cholerae wild-type and mutant strains grown
with constant aeration at 37°C for 24 hours at pH 7.5 with
0-400 mM sodium chloride (panel A), 0-400 mM potassium
chloride (panel B), or 0-100 mM lithium chloride (panel C). In
addition, panels on the right side show strains grown with 33
mM lactate, while panels on the left side are grown without
any lactate. Bars represent means plus standard errors of the
means (SEM).

An exception to that was noticeable at pH 6.5, where no
strain reacted to increasing potassium concentrations (Figure
2B, left panel), except when lactate was present (Figure 2B, right
panel). Lactate addition aims to replenish the quinone pool via
L-lactate dehydrogenase when nqr is deleted. Overall, it slightly
increased the growth of strains at all pH and cation conditions,
likely because it supported respiration efforts while also being
utilized as carbon source.

Growth phenotypes of single and double deletions
of nhaA, nhaB and nqr of V. cholerae strain O395N1
as a function of sodium concentration, pH and
lactate

Similarly to the wild-type, increasing concentrations of
sodium slightly improved growth of all mutants, with minor
exceptions at high sodium concentrations. At pH 6.5 and the
addition of 400 mM NaCl, both the Δnqr/ΔnhaA and Δnqr/
ΔnhaB double mutants displayed slight sodium sensitivity and
the addition of lactate partially corrected the growth of Δnqr/
ΔnhaB, although not being statistically different to Δnqr/ΔnhaA
(p=0.9) (Figure 2A).

There was a statistical difference to the Δnqr single mutant
and the ΔnhaA/ΔnhaB double mutant that was not present with
300 mM sodium, rendering this small change noteworthy
(Figure 2A). It seems that Vc-NQR plays some role at high
sodium and pH 6.5, with support from NhaA and auxillary help
by NhaB (Figure 2A).

However overall, sodium environments did not seem to have
much effect on any of these strains, highlighting the well-
coordinated acid and sodium tolerance response in this
organism that is likely relying on an abundance of membrane
proteins including the ones highlighted in this study (Figure 1).

At pH 7.5, sodium transport activity seems to rely on the
simultaneous presence of Vc- NhaA and Vc-NQR, as addition of
lactate only slightly restored growth of the Δnqr/ΔnhaA double
mutant when ≥ 100 mM sodium is present (Figure 3A). Recent
findings have shown that at pH 7.5 and higher, NQR could
experience some Na+ backflow, making its pumping less
effective [23], however our results suggest that Vc-NQR activity
is still required when nhaA is deleted. This confirms our earlier
findings that were based on transcriptome analysis and
suggested that Vc-NhaA complements the sodium pumping
activity of Vc-NQR [32].

The only moderate growth reduction of the Δnqr/ΔnhaA
double mutant (Figure 3A) could be explained by the likely pH-
independent Vc-NhaB sodium pump and/or additional
antiporters, such as Vc-NhaD, that could be collaborating under
these conditions. Earlier work by Dzioba et al. [33] using everted
membrane vesicles suggested that the Vc-NhaD antiporter can
export sodium at pH 7.5 (and 8.5), but abolishes all activity at pH
6.5. More in depth investigations into the roles of Vc-NhaD with
Vc-NhaA, Vc-NhaB and Vc-NQR for V. cholerae growth would be
very valuable, as most previous studies were either done with
membrane vesicles, in E. coli, or using cell counts on agar plates.

The most dramatic effects on bacterial growth were found at
pH 8.5 (Figure 4A). Without lactate, all strains that lack Vc-NQR
were moderately growth inhibited at pH 8.5 in comparison to pH
7.5 and 6.5, regardless of sodium concentration (Figure 4A, left
panel). The addition of lactate mostly recovered that deficit,
indicating that much of that pH sensitivity is related to loss of
respiration in the absence of Vc-NQR (Figure 4A, right panel).

With the addition of lactate the growth performances of all
strains resembled those observed at the pH 7.5 condition
(Figures 3A and 4A, left panel), with only the Δnqr/ΔnhaA
double mutant being moderately growth deficient regardless of
sodium addition. This again could be explained by the necessity
of Vc-NhaA in combination with Vc-NQR, and a relatively inferior
role of Vc-NhaB. Lastly, the generation of a proton- gradient
across the cell membrane is difficult at high pH, as the cell
environment is more alkaline than the cytoplasm, and this is
likely reflected in the diminished overall bacterial growth at pH
8.5 (Figure 4A).
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Figure 4: Vibrio cholerae wild-type and mutant strains grown
with constant aeration at 37°C for 24 hours at pH 8.5 with
0-400 mM sodium chloride (panel A), 0-400 mM potassium
chloride (panel B), or 0-100 mM lithium chloride (panel C). In
addition, panels on the right side show strains grown with 33
mM lactate, while panels on the left side are grown without
any lactate. Bars represent means plus standard errors of the
means (SEM).

Growth phenotypes of single and double deletions of nhaA,
nhaB and nqr of V. cholerae strain O395N1 as a function of
potassium concentration, pH and lactate

As expected, across pH 6.5 and 7.5, all strains tolerated
increasing concentrations of potassium well (Figures 2B and 3B),
suggesting that neither of the investigated proteins has a
principal role in potassium transport at those pH conditions.

At pH 8.5, all strains, including the ∆nqr mutant, grew better
with the addition of potassium (Figure 4B), which could
underline the importance of the potassium transporting.

NhaP homologues that help maintain the transmembrane
voltage in absence of sodium (proton motive force) [27, 31,34].
Without lactate, lack of Vc-NQR does not interfere with growth
when potassium concentrations increased, but if both Vc-NQR
and Vc- NhaA are missing growth was reduced compared to the
experiments with sodium (Figure 4B vs. Figure 4A, left panel). In
addition, when lactate was added a slight sensitivity at the
highest potassium concentration remained with that double
mutant (Figure 4B, right panel). This could hint at some
potassium-transporting capacity of Vc-NhaA at high pH under
high potassium pressure, which might be masked by strong
NhaP2 activity under those conditions [34]. This would be a
remarkable new finding and these intriguing observations
should be further investigated.

Growth phenotypes of single and double deletions
of nhaA, nhaB and nqr of V. cholerae strain O395N1

as a function of lithium concentration, pH and
lactate

Addition of lithium chloride was evaluated because Li+ is an
analogue of Na+ and toxic to bacterial cells even at low
concentrations. Lithium concentrations of 25 to 100 mM were
evaluated in these experiments as higher concentrations tended
to be lethal for these strains. At pH 6.5, strains did not show any
sensitivities to increasing concentrations of lithium, regardless of
the presence of lactate (Figure 2C). This indicates that none of
the proteins evaluated in this study are essential against lithium
toxicity at acidic pH.

At pH 7.5, growth of the ∆nqr/∆nhaA double mutant did not
improve with increasing lithium concentrations in contrast to all
other strains (Figure 3C). This difference is particularly evident
with the addition of lactate (Figure 3C, right panel). The ∆nqr/
∆nhaA double mutant displayed slightly inferior growth
performance in the presence of 100 mM lithium in comparison
to the no lithium control, while all single mutants and the
∆nhaA/∆nhaB double mutant grew well (Figure 3C, right panel).
This suggests that both NhaA and NQR are somewhat involved
with lithium export at this pH.

More remarkable were the changes at pH 8.5 (Figure 4C). All
strains tolerated a lithium concentration of 25 mM well.
However, only the wild-type strain and the ∆nhaB mutant grew
favorably at lithium concentrations up to 75 mM, while 100 mM
generally stunted growth minimally. The addition of lactate
recovered the growth of strains that lack NQR with the
exception of the ∆nqr/∆nhaA double mutant and the ∆nhaA
single mutant at lithium concentrations of 50 mM and higher
(Figure 4C, right panel).

This suggests that NhaA is crucial for lithium expulsion at high
pH, supporting Herz et al. [11], who suggested that NhaA is a
pH-dependent Li+ transporter, while neither NQR, nor NhaB are
very effective at lithium transport. These findings are in
accordance with Toulouse et al. [23] who proposed that the
NqrB subunit leaks lithium due to its small size at pH 6.5 to 9.0.
Curiously, the ∆nhaA/∆nhaB double mutant did experience
much less dramatic lithium sensitivity than expected (Figure 4C),
encouraging further investigations into lithium transport
activities of these antiporters in the future.

Conclusion
As V. cholerae lacks the gene for a Complex I type of enzyme,

Vc-NQR is likely the major respiratory enzyme that transfers
electrons from NADH to quinone while simultaneously
translocating sodium ions across the cellular membrane. Loss of
Vc- NQR has major implications in cellular respiration and Na+
homeostasis, which can be visually observed by much slower
growth and thus smaller colony-size on “regular” LB agar plates
(data not shown). With the addition of lactate, we aimed at
replenishing the quinone pool via L-lactate dehydrogenase (1).

In our earlier work, we concluded that loss of Vc-NQR did not
affect osmotic stress resistance and suggested, based on
transcriptome analysis, that NhaA possibly complements the
sodium transport activity of NQR (32). Indeed the present study
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indicates that NQR is relevant for sodium transport at pH 7.5 and
8.5, as it supported NhaA, which was essential at high pH. It had
been earlier suggested that, when expressed in E. coli, the V.
cholerae NQR and NhaA proteins collaborate to confer sodium
and lithium resistance [11]. However, in V. cholerae, we had
shown that NQR at pH 7.8 is specific for sodium but less
important for lithium [35] and in the present study we found
that to be also true at pH 8.5.

Generally, none of the transport proteins Vc-NhaA, Vc-NhaB,
or Vc-NQR seem to have essential cation-transporting activities
at pH 6.5, or the effects of their deletions are appropriately
covered by other antiporters, e.g. NhaD, the NhaC family, Mrp,
NhaP, etc. We present evidence that NhaA might be able to
transport potassium at high pH and potassium levels. Our earlier
results strongly implied that potassium resistance of V. cholerae
at a wide range of pH is mainly conferred by NhaP1 [27], NhaP2
[34,36] and NhaP3 [31]. It is however possible that these NhaP-
type antiporters, annotated Kef-type potassium transporters
[37] and possibly unidentified V. cholerae homologues to E.coli’s
potassium export systems [38,39] could mask possible
potassium pumping activity of Vc-NhaA and this finding should
be investigated in the future.

The biggest cation sensitivities of our mutant strains were
observed at pH 8.5. NhaA was not only essential for sodium
transport but also lithium, when lithium concentrations were 50
mM or higher. Curiously, the ΔnhaA/ΔnhaB double mutant was
not as sensitive to increasing lithium concentrations as
expected, and the role of NhaB in lithium transport is still rather
obscure. More investigations to better understand these
observations and respective cation homeostasis are warranted
to further elucidate how V. cholerae navigates in a wide range of
challenging environmental conditions.
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