
Groupware in the Software Development Domain
Segun Sofoluwe A*

Department of Computer and Information Science, Lead City University, lagos, Nigeria
*Corresponding author: Segun Sofoluwe A, Department of Computer and Information Science, Lead City University, lagos, Nigeria, E-mail:
ssofluwe@babcock.edu.ng

Received date: January 01, 2022, Manuscript No. IPACSIT-22-12651; Editor assigned date: January 04, 2022, PreQC No. IPACSIT-22-12829 (PQ);
Reviewed date: January 18, 2022, QC No. IPACSIT-22-12829; Revised date: January 22, 2022, Manuscript No. IPACSIT-22-12829 (R); Published date:
January 29, 2022, DOI:10.36648/2349-3917.10.1.128

Citation: Sofoluwe S (2022) Groupware in the Software Development Domain. Am J Compt Sci Inform Technol Vol:10 No:1

Descriptive
Issues are at the center of quite a bit of what individuals

achieve at work consistently. The challenges you face can be
immense or little, basic or mind boggling, simple or extreme,
whether you're resolving an issue for an inward or outside
client, helping individuals who are tackling issues, or
distinguishing new issues to address. The various methodologies
and manners by which the difficulties we meet in programming
improvement can be diminished or maybe wiped out forever will
be exhibited involving issue goal systems in programming
advancement. Understanding and surveying a bunch of
necessities for an issue, concocting an answer and executing
that response on the PC, along with tests that demonstrate the
program satisfies its objectives, would all be essential for the
programming [1].

Models for Collaborative Problem Solving
In programming improvement, critical thinking is the method

involved with endeavoring to tackle an issue space by applying
hypothetical information and examination, best practices, and
scrutinizing thoughts. All things considered, the product you're
making ought to be helpful. What are your objectives, and how
might you separate them into highlights, user cases, stories, and
cycles. All things considered, what benefit is programming in the
event that it doesn't make things simpler, quicker, more
productive, or less expensive, or on the other hand in the event
that it doesn't tackle an issue like representatives digressing
from an interaction? In this way, in programming improvement,
critical thinking is the utilization of rationale and interaction
thinking joined with imagination to settle a product challenge
[2]. The technique for resolving a software development
problem. The process of fixing a software development
challenge, in my opinion, may be broken down into four steps.

Method of Collaborative Problem Solving
In software development, problem working is critical.

Numerous of the abecedarian software development processes,
from conditions analysis, specification, and design through
testing and verification, may be seen as conventional problem-
working styles. As the complexity of software development has
increased, a new aspect has surfaced collaboration. Indeed, the

adding complexity of operations has demanded the operation of
brigades or groups to develop software, as individualities are
unfit to develop huge software systems with sufficient speed or
quality. This review will concentrate on cooperative or group
problem working exploration and development in the field of
software development, with the thing of relating major
outstanding motifs and possibilities for both proposition and
practice advancement [3].

The ultramodern computing professional workshop in an
terrain where programs can be thousands or millions of lines
long, are constantly acclimated and maintained rather than
erected, are edited in a tool-rich terrain, and work is nearly
always a cooperative bid According to computer scientists are
unrehearsed for moment's terrain since their pre-professional
training generally concentrates on the creation of little programs
(programming-in-the-small) and provides little moxie in
sophisticated software development. Large-scale system
development, on the other hand, necessitates a cooperative
trouble, and the more complex the problem, the lesser the
platoon needed to attack it. The fact that sphere-specific moxie
is generally localized and geographically spread is another
element that contributes to the demand for platoon
development. According to studies, the capability to emplace
good groupware is important to the success of similar inventors,
especially when they're distributed. Collaboration in system
development has come a demand, not just a theoretically
doable volition, as a result of these causes. Fortunately, the
arrival of the World Wide Web has made geographically
distributed cooperative systems technologically practical in ways
that were ahead delicate or insolvable. The word" groupware"
will be used to describe the software surroundings needed to
support a platoon whose members cooperate via a network.
Groupware results are designed to give a platoon a participated
workspace indeed if they're geographically and temporally
distant. The use of groupware or cooperative results can help to
palliate the logistical challenges that come with using distributed
chops. Indeed, the unborn generation of development processes
is projected to place a decoration on the effective integration of
haphazard knowledge [4].

Collaboration has been shown to have a favorable influence
on both educated and novitiate programmers' experimental
trials. Conducted exploration to see if previous cooperation
experience could help neophyte programmers with problem-

Commentary Article

iMedPub Journals
www.imedpub.com

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.10 No.1:128
2022

© Copyright iMedPub | This article is available from: https://www.imedpub.com/computer-science-and-information-technology/ 1

http://www.imedpub.com/
https://www.imedpub.com/computer-science-and-information-technology/


working and programming tasks. The findings supported the
idea that cooperative sweats could increase the problem
working chops demanded for programming assignments. The
study compared a control group of freshman programmers who
worked alone on a software challenge to a group of
programmers who were free to talk with one another. The
results showed that indeed simple collaboration bettered the
freshman programmer's problem- working capacities. The study
also discovered substantiation that an existent's capability had
minimum overall impact on platoon performance, a marvel they
argue occurs because cooperation compensates for individual
excrescencies. The study also plant that the collaboration gave
the programmers further confidence in the answer and made
the problem- working process more pleasurable for them.
Beginning programmers appear to profit from cooperative
relations, which appear to prop in the analysis and modeling of
problems, as well as the mastery of the logical capacities needed
for similar conditioning. Other controlled experimental
examinations show that including cooperative conditioning into
problem working and programming instruction is salutary
indeed at the early stages. Collaboration helps the problem-
working process, according to trials with educated software
inventors. Indeed, all of the study's platoon systems
outperformed original singly completed systems, while platoon
members were more tête-à-tête satisfied with their work and
had further confidence in their answers [5].

The overall thing of this study is to find strategies to make the
software development process more effective through
collaboration. The review will concentrate on four areas group
problem working, individual problem working, groupware, and
group psychology/ sociology, including group and individual
problem working models and tools, groupware systems, group
cognition and platoon dynamics in the software development
sphere. With the thing of relating a study content that will
represent an enhancement in the state of the art, we will
punctuate benefactions and remaining issues in group problem
working and group software development [6].

Models for Collaborative Problem Solving
By description, a group engaged in cooperative problem

working produces a plan for erecting a result to attack a being
problem. Cooperative groups appear to be better at dealing with
complicated tasks than individualities, in part because groups
have a wider range of chops and capacities than individualities.
Anyhow, exploration shows that group problem working is more
delicate than single issue working. It can present group-specific
issues similar as a commerce terrain that limits free expression
of ideas. Participation impulses, controversies performing from
interpersonal issues, or obstacles coming from the group's
structure [7]. Overall, still, the advantages of problem working
cooperation greatly overweigh the downsides. One prominent
benefit of cooperation is the ancillary enhancement of mortal
capital that occurs as a result of individualities learning from the
bents and capacities of others in the group. The demand to
communicate designs, reviews, and arguments to other
members of a group also improves a person's specialized,
critical, and interpersonal capacities.

A cooperative problem working model is a strategy for easing
cooperative problem working that's clear. Not only would a
comprehensive model include general problem- working
procedures, sphere-specific tasks, and essential cognitive chops,
but it'll also incorporate the communication and collaboration
conditioning that a cooperative setting necessitates. It's possible
that the cooperative problem- working approach is analogous to
the solo problem working approach. Indeed, observes in his
crucial work on group software development that cooperative
problem working can be done using the same problem working
methodologies as individual problem working. While it's vital for
a group to easily choose and borrow a problem- working
approach, and while group members should be familiar with the
system, according to Hofmann, the system doesn't have to be
cooked specifically for group issue working. Despite this laissez-
faire station toward the problem- working system of choice,
Hofmann observes that the way a platoon adapts such a strategy
in a cooperative environment differs significantly from the way
an individual applies the same system [8].

Groupware
A groupware system can be classified as synchronous,

asynchronous, or a combination of the two. Synchronous
groupware systems operate in real time and facilitate group
communication and collaboration through the use of tools like
instant messaging. An electronic meeting system for
brainstorming is an example. Asynchronous technologies, such
as email, allow users to access saved messages or transmit
messages to be seen later. A system having a message board and
a chat feature is an example of a system with both asynchronous
and synchronous features. Hilts investigated how synchronous
and asynchronous techniques affect communication behavior
differently. Asynchronous systems, for example, have extensive
conversations with several, concurrent discussion threads,
whereas synchronous systems have participants focusing on a
single issue at a time. Huang make a new distinction between
synchronous and asynchronous systems, based on how tasks
and information are shared rather than the temporal features of
interactions [9]. Asynchronous systems are defined as
groupware systems in which tasks and choices are assigned
individually and not shared until they are completed.
Synchronous systems, on the other hand, provide a completely
shared workspace that is always available to all users, where
work products are generated and evaluated in a collaborative
environment with little task separation, and then merged by
joint team decisions.

Groupware Software
Some of the introductory features of groupware functionality

have been expanded into a number of settings. This section will
go through some of the collaboration tools, platforms, and
settings, as well as cooperative problem working and software
development. The review will be picky rather than thorough, as
it's primarily designed to demonstrate the types of systems that
are accessible. We will start with a look at some common
groupware systems, also move on to systems intended expressly
for cooperative problem working and/or software development.

American Journal of Computer Science and Information Technology
ISSN 2349-3917 Vol.10 No.1:128

2022

2 This article is available from: https://www.imedpub.com/computer-science-and-information-technology/

https://www.imedpub.com/computer-science-and-information-technology/


Eventually, we shall concentrate in lesser depth on the features
of several important cooperative systems including Lotus Notes,
Groove, and Rational Rose [10].

Conclusion
Software development groupware's ultimate thing is to

ameliorate the software development process. To date, similar
operations have placed a lesser emphasis on processes and
technologies than on people systems have analogous limits, as
well as corresponding chances for enhancement. These failings
stem from “not comprehending the particular demands this
class of software imposes on inventors and druggies," according
to a notable experimenter in the field. The end is to convert
these excrescencies into exploration openings.

The general result of our analysis of the literature is that
incorporating perspectives and issues from cooperative problem
working, psychology, sociology, and cooperative software
development can significantly advance the state of the art. Our
overall thing will be to design a cooperative problem working
model that takes into account a cooperative software
development group's problem working cognitive processes as
well as cerebral and sociological rudiments that impact
cooperation. The model will specifically handle a group's
communication, cooperation, and collaboration requirements.

References
1. Desk FP (1999) The software process: a parallel approach through

problem solving and program development. Comput Sci Educ 9:
43-70.

2. Prey JC (1996) “Cooperative learning and closed laboratories in an
undergraduate computer science curriculum”. Comp Sci edu pp:
23-24.

3. Nunamaker J (1999) Collaborative computing: the next
millennium. Computer 32: 66-71.

4. Wilson J, Hoskin N (1993) The benefits of collaboration for student
programmers. Comp Sci Edu pp:160-164.

5. Sabin RE, Sabin E (1994) Collaborative learning in an introductory
computer science course. Comp science edu pp:304 – 308.

6. Nosek J (1998) The case for collaborative programming. Commun
ACM 41: 105-108.

7. Finnegan P (1996) Group problem solving and decision making: an
investigation of the process and the supporting technology. J Inf
Technol 11:211-221.

8. Guzdial M, Kolodner J (1996) Computer support for the learning
through complex problem solving. Commun ACM 39: 43-45.

9. Hiltz SR (1985) structuring computer mediated communication.
CACM 28: 682-689.

10. Jarzabek S (1998) “The case for user-centered case tools”.
Commun ACM 41: 93-99.

 

American Journal of Computer Science and Information Technology
ISSN 2349-3917 Vol.10 No.1:128

2022

© Copyright iMedPub 3

https://www.tandfonline.com/doi/abs/10.1076/csed.9.1.43.3812
https://www.tandfonline.com/doi/abs/10.1076/csed.9.1.43.3812
https://dl.acm.org/doi/abs/10.1145/237477.237490
https://dl.acm.org/doi/abs/10.1145/237477.237490
https://www.computer.org/csdl/magazine/co/1999/09/r9066/13rRUwInuZu
https://www.computer.org/csdl/magazine/co/1999/09/r9066/13rRUwInuZu
https://dl.acm.org/doi/abs/10.1145/169073.169383
https://dl.acm.org/doi/abs/10.1145/169073.169383
https://dl.acm.org/doi/10.1145/191033.191156
https://dl.acm.org/doi/10.1145/191033.191156
https://dl.acm.org/doi/10.1145/272287.272333
https://journals.sagepub.com/doi/10.1177/026839629601100303
https://journals.sagepub.com/doi/10.1177/026839629601100303
https://dl.acm.org/doi/10.1145/227210.227600
https://dl.acm.org/doi/10.1145/227210.227600
https://dl.acm.org/doi/10.1145/3894.3895
https://dl.acm.org/doi/abs/10.1145/280324.280338

	Contents
	Groupware in the Software Development Domain
	Descriptive
	Models for Collaborative Problem Solving
	Method of Collaborative Problem Solving
	Models for Collaborative Problem Solving
	Groupware
	Groupware Software
	Conclusion
	References


