

Global Trends in Antimicrobial Resistance: Challenges for Public Health Policy and Surveillance

Lucia Hernandez*

Department of Public Health Research, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico

*Corresponding author: Lucia Hernandez, Department of Public Health Research, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico, E-mail: hernandezlucia01@unam.mx

Received date: January 01, 2025, Manuscript No. ipijgh-25-20925; **Editor assigned date:** January 03, 2025, PreQC No. ipijgh-25-20925(PQ); **Reviewed date:** January 21, 2025, QC No. ipijgh-25-20925; **Revised date:** January 29, 2025, Manuscript No. ipijgh-25-20925(R); **Published date:** February 6, 2025

Citation: Hernandez L (2025) The Role of Genomic Epidemiology in Tracking Emerging Infectious Diseases: A Global Health Approach. Integr J Glob Health. Vol. 9 No: 1:3

Introduction

Anti-Microbial Resistance (AMR) has emerged as one of the most pressing global health crises of the 21st century, threatening the effectiveness of modern medicine and the success of infectious disease control. Defined as the ability of microorganisms such as bacteria, viruses, fungi, and parasites to resist the effects of antimicrobial agents, AMR has resulted in longer hospital stays, increased mortality rates, and escalating healthcare costs worldwide. The World Health Organization (WHO) has identified AMR as a top-ten global health threat, warning that if current trends continue, common infections may once again become untreatable. The rise of multidrug-resistant pathogens, such as Methicillin-Resistant Staphylococcus Aureus (MRSA), Extended-Spectrum Beta-Lactamase (ESBL)-producing Enterobacteriaceae, and carbapenem-resistant Acinetobacter, underscores the urgent need for coordinated international action [1].

Description

The global rise in antimicrobial resistance is driven by several interconnected factors, including overuse and misuse of antibiotics in human medicine, agriculture, and animal husbandry. In many low- and middle-income countries, antibiotics are available over the counter without prescription, leading to widespread self-medication and inappropriate dosing. Simultaneously, the use of antimicrobials as growth promoters in livestock contributes to the emergence of resistant strains that can spread to humans through the food chain and the environment. International travel and trade further facilitate the cross-border transmission of resistant pathogens, making AMR a truly global problem. Environmental contamination through pharmaceutical waste, poor sanitation and inadequate infection control in healthcare facilities also plays a significant role in sustaining resistance. Despite growing awareness, the development of new antibiotics has slowed dramatically, with few pharmaceutical companies investing in novel antimicrobial agents due to high costs and low profitability [2].

This imbalance between the rapid rise of resistance and the slow pace of drug innovation represents one of the most critical challenges in combating AMR. Effective surveillance and policy intervention are central to managing antimicrobial resistance. Global initiatives such as the WHO's Global Antimicrobial Resistance Surveillance System (GLASS) have been established to collect and standardize resistance data across countries, promoting transparency and data-driven policy-making. However, gaps persist, particularly in regions with limited laboratory capacity and weak health infrastructure. Strengthening diagnostic capabilities, implementing antimicrobial stewardship programs, and enforcing strict regulations on antibiotic use are essential steps toward curbing resistance [3].

Additionally, public health education plays a vital role in changing community behavior and promoting rational antibiotic use. Collaboration among governments, healthcare providers, researchers, and the pharmaceutical industry is necessary to ensure a unified response. The One Health approach which recognizes the interconnectedness of human, animal, and environmental health has become a cornerstone of modern AMR strategy, emphasizing coordinated interventions across all sectors [4,5].

Conclusion

Antimicrobial resistance is a complex, evolving global threat that demands urgent, sustained, and collaborative action. Without effective policy implementation, surveillance, and stewardship, the world risks entering a post-antibiotic era where routine infections and minor surgeries become life-threatening. Strengthening global surveillance networks, promoting responsible antibiotic use, and investing in research and innovation are critical to reversing current trends. Governments must adopt a One Health perspective, integrating human, animal, and environmental health policies to achieve long-term control of resistance. Ultimately, combating AMR requires global solidarity, scientific innovation, and public commitment to preserve the efficacy of life-saving antimicrobials for future generations.

Acknowledgement

None

Conflicts of Interest

None

Reference

1. Zhai W, Tian Y, Lu M, Zhang M, Song H, et al. (2022) Presence of mobile tigecycline resistance gene tet (X4) in clinical *Klebsiella pneumoniae*. *Microbiol Spectr* 10: e01081-2
2. Chen C, Cui CY, Yu JJ, He Q, Wu XT, et al. (2020) Genetic diversity and characteristics of high-level tigecycline resistance Tet (X) in *Acinetobacter* species. *Genome Med* 12: 111
3. He T, Wang R, Liu D, Walsh TR, Zhang R, et al. (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. *Nat Microbiol* 4: 1450–1456
4. Olson MW, Ruzin A, Feyfant E, Rush TS III, O'Connell J, et al. (2006) Functional, biophysical, and structural bases for antibacterial activity of tigecycline. *Antimicrob Agents Chemother* 50: 2156–2166
5. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, et al. (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob Agents Chemother* 58: 3895–3903