### Available online at www.pelagiaresearchlibrary.com



**Pelagia Research Library** 

Asian Journal of Plant Science and Research, 2012, 2 (3):323-329



## Free radical scavenging effect of various extracts of leaves of *Balanites aegyptiaca*(L.) Delile by DPPH method

# Bhupendra K. Kumawat<sup>1\*</sup>, Mahesh Gupta<sup>2</sup>, Tarachand<sup>3</sup> and Yogendra Singh<sup>4</sup>

<sup>1</sup>NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
<sup>2</sup>Kota College of Pharmacy, Kota, Rajasthan, India
<sup>3</sup>Regional College of Pharmacy, Jaipur, Rajasthan, India
<sup>4</sup>Shanti Niketan College of Pharmacy, Mandi, Himachal Pradesh, India

### ABSTRACT

The study of free radicals and antioxidants in biology is producing medical revolution that promises a new age of health and disease management. The present study was performed to evaluate the in vitro antioxidant effect of the petroleum ether, alcoholic and aqueous extracts of Balanites aegyptiaca (L.) Delile (Zygophyllaceae) by using DPPH method. The alcoholic extract exhibited significant inhibition in DPPH free radical formation with  $IC_{50}$ values of 10.7474. The alcoholic extract showed potent activity on DPPH, which is compared to that of ascorbic acid ( $IC_{50} = 21.2253$ ) taken as standards. The results of the present comprehensive analysis demonstrated that alcoholic extract of Balanites aegyptiaca (L.) Delile is a viable source of natural antioxidants and might be exploited for functional foods and nutraceutical applications.

Key words: Balanites aegyptiaca (L.) Delile, Successive solvent extracts, DPPH free radical scavenging.

### INTRODUCTION

*Balanites aegyptiaca* (L.) Delile, also known as 'desert date' in English, belongs to family *Zygophyllaceae*. This tree is native to much of Africa and parts of the Middle East. In India, It is particularly found in drier parts of Rajasthan, Madhya Pradesh, Gujarat and Deccan. This is one of the most common but neglected wild plant species of the dry land areas of Africa and South Asia [1]. The tree can grow up to 10 meters in height with spiny branches, compound leaves and greenish yellow flowers, double root system and pale brown date-like fruits. [2].

It is highly resistant to stresses such as sandstorms and heat waves, and grows with minimal available moisture [3]. Literature has revealed antifeedent, molluscicide, antidiabetic, contraceptive activities and antihelminthic in various *Balanites aegyptiaca* (L.) Delile extracts [4-8]. The bark, unripe fruits, and leaves of this plant are reported to have anthelmintic, antifertility, purgative and antidysentric properties [9,10.11].

Antioxidants are reducing agents and limit oxidative damage to biological structures by passivating free radicals. These are compounds, when added to lipids and lipid containing foods increases their shelf-life by retarding the process of lipid peroxidation. Also, these have been widely used as food additives to avoid food degradation, and they play an important role in preventing many lifestyle-related diseases and aging, being closely related to the formation of ROS and to lipid peroxidation [12]. Antioxidant compounds are widely used compounds to counter the free radicals mediate oxidative stress in the cell. These antioxidant compounds can be derived from natural and

chemical sources. Natural sources are much safer to use due to less toxicity and side effects, so the production of antioxidant compound from the natural sources such as plants and algae is in great demand [13].



Fig. 1: Balanites aegyptiaca (L.) Delile

DPPH assay has been extensively used for screening antioxidant activity because it can accommodate many samples in a short period and is sensitive enough to detect active ingredients at low concentration. When DPPH radicals encounter a proton donating substance such as an antioxidant, it would be scavenged and the absorbance is reduced. Thus, the DPPH radicals were widely used to investigate the scavenging activity of some natural compounds [14].

Free radicals are implicated for more than 80 diseases including Diabetes mellitus, arthritis, cancer, ageing etc. In treatment of these diseases, antioxidant therapy has gained an utmost importance. Current research is now directed towards finding naturally occurring antioxidant of plant origin. Therefore we investigated free radical scavenging effect of various successive extracts of leaves of Balanites Aegyptiaca(L.) Delile by DPPH method.

### MATERIALS AND METHODS

#### **Collection and authentication**

The plant leaves of Balanites Aegyptiaca (L.) Delile was collected from uncultivated fields in and around the Village Maroth of Nagaur District, Rajasthan, India during 2011. The Plant was identified from "Department of Botany, University of Rajasthan, Jaipur and confirmed by compared with the help of herbarium maintained at the Department of Botany, University of Rajasthan, Jaipur. A voucher specimen (No. RVBL21073) was deposited and preserved in Herbarium Department of Botany, University of Rajasthan, Jaipur of Rajasthan, Jaipur for further reference.

### **Preparation of plant extract**

The leaves after collection were shade-dried, powdered (40 mesh size) to get a coarse powder and stored in a well closed container. The dried coarse powder (450 g) was subjected to soxhlet extraction successively with petroleum ether (60-80°), ethanol (95%) and distilled water to get the crude extracts. Each time before extracting with next solvent, the powdered material was dried in hot air oven below  $50^{\circ}$ C. The extracts were concentrated to dryness in a flash evaporator under reduced pressure and controlled temperature (50-60°). All the extracts were stored in refrigerator for further study [15].

### Bhupendra K. Kumawat et al

### Chemicals

2,2'- diphenylpicryl-1-hydrazyl (DPPH) was purchased from Sigma-Aldrich Chemical Co. (Milwaukee, WI, USA). Ascorbic acid was obtained from Merck Ltd., Mumbai, India. Methanol was analytical grade and obtained from SD fine chemicals Ltd., Mumbai, India. All reagents used for the experiments were of analytical grade (AR).

### DPPH free radical scavenging activity

The scavenging reaction between (DPPH) and an antioxidant (H-A) can be written as [16].

 $\begin{array}{ll} DPPH + (H - A) \rightarrow DPPH - H + A \\ (Purple) & (Yellow) \end{array}$ 

The hydrogen atom- or electron-donation ability of the corresponding extracts and some pure compounds were measured from the bleaching of the purple-colored methanol solution of 2,2'- diphenylpicryl-1-hydrazyl (DPPH). This spectrophotometric assay used stable radical DPPH as a reagent [17,18]. 50 ml of various concentrations of the successive extracts in methanol were added to 5 ml of a 4 mg/100 ml methanol solution of DPPH, it was protected from light by covering the test tubes with aluminum foil. The mixture was shaken vigorously and left to stand for 30 min incubation period at room temperature, and the absorbance was measured at 517 nm using methanol as blank. Extract concentration providing 50% inhibition (IC50) was calculated using the graph by plotting inhibition percentage against extract concentration. Ascorbic acid (AA) was used as positive controls and all tests were carried on triplicates. [19]

The free radical scavenging activity (FRSA) (% antiradical activity) was calculated using the following equation: % Antiradical activity = [(Control Absorbance - Sample absorbance) / Control Absorbance] x100

### **RESULTS AND DISCUSSION**

Free radical scavenging effects of petroleum ether, alcoholic and aqueous extracts of leaves of *Balanites aegyptiaca* (L.) Delile at different concentrations were measured with ascorbic acid as standard compound by using DPPH method. The results are tabulated in table 1-4. Free radical scavenging capacity increased with increasing extracts concentration (Fig 6).

Table-5 shows the DPPH radical scavenging activity of different successive extracts which is expressed in terms of  $IC_{50}$  value with respect to ascorbic acid as standard. Lower  $IC_{50}$  value shows more antioxidant potential. The  $IC_{50}$  value for alcoholic extract was 10.7474 µg/ml which was comparatively lower than the  $IC_{50}$  (21.2253 µg/ml) of ascorbic acid, showed that alcoholic extract of *Balanites aegyptiaca* (L.) Delile are more effective as antioxidant compared to ascorbic acid.

Table1. Free radical scavenging effects of petroleum ether extract of Balanites aegyptiaca (L.) Delile leaves.

| Conc. | Absorbance of sample | Control | Ctrlsample/ctrl | % Inhibition |
|-------|----------------------|---------|-----------------|--------------|
| 10    | 0.212                | 0.256   | 0.171875        | 17.1875      |
| 20    | 0.201                | 0.256   | 0.214844        | 21.48438     |
| 30    | 0.189                | 0.256   | 0.261719        | 26.17188     |
| 40    | 0.175                | 0.256   | 0.316406        | 31.64063     |
| 50    | 0.153                | 0.256   | 0.402344        | 40.23438     |
| 60    | 0.127                | 0.256   | 0.503906        | 50.39063     |
| 70    | 0.102                | 0.256   | 0.601563        | 60.15625     |
| 80    | 0.079                | 0.256   | 0.691406        | 69.14063     |
| 90    | 0.063                | 0.256   | 0.753906        | 75.39063     |
| 100   | 0.048                | 0.256   | 0.8125          | 81.25        |

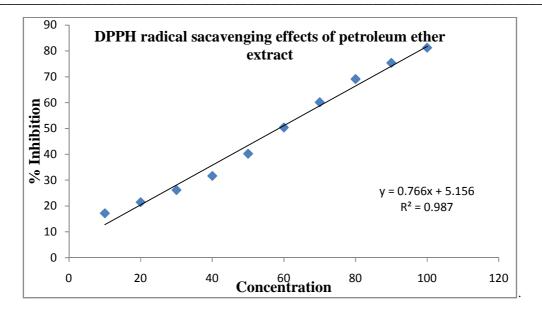



Fig. 2: Free radical scavenging effects of petroleum ether extract of *Balanites aegyptiaca* (L.) Delile leaves.

| Table2. Free radical scavenging effects on alcoholic extrac | t of Balanites aegyptiaca (L.) Delile leaves. |
|-------------------------------------------------------------|-----------------------------------------------|
|-------------------------------------------------------------|-----------------------------------------------|

| Conc. | Absorbance of sample | Control | Ctrlsample/ctrl | % Inhibition |
|-------|----------------------|---------|-----------------|--------------|
| 10    | 0.129                | 0.256   | 0.496094        | 49.60938     |
| 20    | 0.12                 | 0.256   | 0.53125         | 53.125       |
| 30    | 0.109                | 0.256   | 0.574219        | 57.42188     |
| 40    | 0.097                | 0.256   | 0.621094        | 62.10938     |
| 50    | 0.084                | 0.256   | 0.671875        | 67.1875      |
| 60    | 0.078                | 0.256   | 0.695313        | 69.53125     |
| 70    | 0.073                | 0.256   | 0.714844        | 71.48438     |
| 80    | 0.067                | 0.256   | 0.738281        | 73.82813     |
| 90    | 0.049                | 0.256   | 0.808594        | 80.85938     |
| 100   | 0.034                | 0.256   | 0.867188        | 86.71875     |

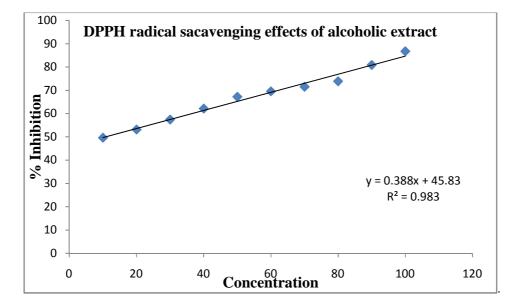



Fig. 3: Free radical scavenging effects on alcoholic extract of *Balanites aegyptiaca* (L.) Delile leaves.

| Conc. | Absorbance of sample | Control | Ctrlsample/ctrl | % Inhibition |
|-------|----------------------|---------|-----------------|--------------|
| 10    | 0.164                | 0.256   | 0.359375        | 35.9375      |
| 20    | 0.155                | 0.256   | 0.394531        | 39.45313     |
| 30    | 0.146                | 0.256   | 0.429688        | 42.96875     |
| 40    | 0.134                | 0.256   | 0.476563        | 47.65625     |
| 50    | 0.126                | 0.256   | 0.507813        | 50.78125     |
| 60    | 0.115                | 0.256   | 0.550781        | 55.07813     |
| 70    | 0.102                | 0.256   | 0.601563        | 60.15625     |
| 80    | 0.075                | 0.256   | 0.707031        | 70.70313     |
| 90    | 0.068                | 0.256   | 0.734375        | 73.4375      |
| 100   | 0.044                | 0.256   | 0.828125        | 82.8125      |

Table3. Free radical scavenging effects on aqueous extract of *Balanites aegyptiaca* (L.) Delile leaves.

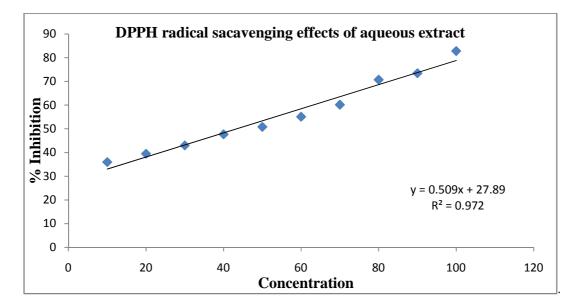



Fig. 4: Free radical scavenging effects on aqueous extract of Balanites aegyptiaca (L.) Delile leaves.

| Conc. | Absorbance of<br>sample | Control | Ctrlsample/ctrl | % Inhibition |
|-------|-------------------------|---------|-----------------|--------------|
| 10    | 0.136                   | 0.256   | 0.46875         | 46.875       |
| 20    | 0.129                   | 0.256   | 0.496094        | 49.60938     |
| 30    | 0.122                   | 0.256   | 0.523438        | 52.34375     |
| 40    | 0.114                   | 0.256   | 0.554688        | 55.46875     |
| 50    | 0.11                    | 0.256   | 0.570313        | 57.03125     |
| 60    | 0.103                   | 0.256   | 0.597656        | 59.76563     |
| 70    | 0.097                   | 0.256   | 0.621094        | 62.10938     |
| 80    | 0.089                   | 0.256   | 0.652344        | 65.23438     |
| 90    | 0.084                   | 0.256   | 0.671875        | 67.1875      |
| 100   | 0.077                   | 0.256   | 0.699219        | 69.92188     |

Table4. Free radical scavenging effects of Ascorbic acid

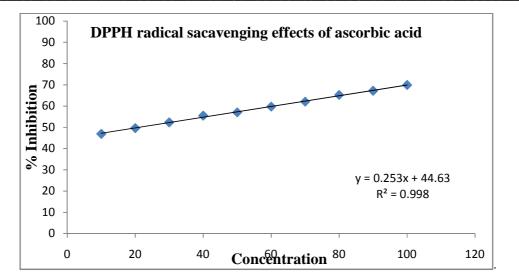



Fig. 5: DPPH radical scavenging activity of Ascorbic acid

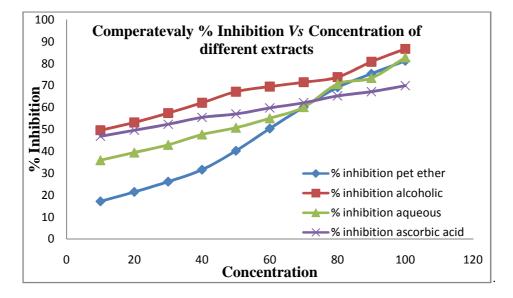



Fig. 6: Free radical scavenging effects of various extract of leaves of *Balanites aegyptiaca* (L.) Delile compared with standard ascorbic acid

| Compound          | IC <sub>50</sub> Value (µg/ml) |  |  |
|-------------------|--------------------------------|--|--|
| Pet ether extract | 58.5431                        |  |  |
| Alcoholic extract | 10.7474                        |  |  |
| Aqueous extract   | 43.4381                        |  |  |
| Ascorbic acid     | 21.2253                        |  |  |

#### CONCLUSION

Based on the results of the present study, we conclude that the plant extract possesses antioxidant potential. The findings of the present study also suggested that alcoholic extract of Balanites *Aegyptiaca* (L.) Delile could be a potential natural source of antioxidants and could have greater importance as therapeutic agent in preventing or slowing oxidative stress related degenerative diseases. However, further studies are necessary to examine underlying

mechanisms of antioxidant effect and to isolate the active compound(s) responsible for these pharmacological activities.

#### REFERENCES

[1] J.B. Hall, D.H. Walker, School of Agricultural and Forest Science. Banger: University of Wales, 1991, 1-12.

[2] C. M. E. Fernandes, Tree and Shrubs Archive, http://www.css. cornell.edu ecf3/web/new/af/treeBaegypt.htm, 2003.

[3] A.M. Mohamed, D. Wolf, W.E. Spiess, Nahrung, 2000, 44, 7-12.

[4] H.W. Liu, K. Nakanishi, Tetrahedron, 1982, 38, 513.

[5] M.M. Iwu, Handbook of African Medicinal Plants, CRC Press, Boca Raton, 1991, 5, pp.139-41.

[6] M.S. Kamel, K. Ohtani, T. Kurokawa, M.H. Assaf, M.A. el-Shanawany, A.A. Ali, *Chem Pharm Bull.*, **1991**, 31, 1229-33.

[7] A.M. Ibrahim, Phytother Res., 1992, 6, 155.

[8] M.V. Rao, K.D. Shah, M. Rajani, Phytother Res., 1997, 11, 469-71.

[9] K.R. Kirtikar, B.D. Basu, Indian Medicinal Plants, vol.3. International Book Distributors, Allahabad, 1996, pp. 1935.

[10] R.N. Chopra, S.L. Nayar, I.C. Chopra, Glossary of Indian Medicinal Plants, vol.1, CSIR Publication, Allahabad, **1956**, pp. 32.

[11] The useful Plants of India. Vol. 213. CSIR Publication, New Delhi, **1994**, pp. 270.

[12] I. Gulçin, V. Mshvildadze, A. Gepdiremen, R. Elias, Planta Med, 2004, 70, 561-563.

[13] Gaurav Pant, Gaurav Kumar, L. Karthik, R. Gyana Prasuna, K. V. Bhaskara Rao, *Eur. J. Exp. Bio.*, **2011**, 1 (1), 156-162.

[14] T. Satyanarayana, M. Chinna Eswaraiah, Res. J. Pharm., Biol. Chem. Sci., 2010, 1(2), 117

[15] C.K. Kokate, Practical Pharmacognosy, Vallabh Prakashan, New Delhi, 4<sup>th</sup> ed, **1997**, pp.109.

[16] Thamaraiselvi, P. Lalitha, P. Jayanthi, Der Pharmacia Sinica, 2012, 3(2), 271-277.

[17] M. Burits, F. Bucar, Phytotheraphy Research, 2000, 14, 323–328.

[18] M. Cuendet, K. Hostettmann, O. Potterat, Chimica Acta, 1997, 80, 1144–1152.

[19] K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, J Agric Food Chem., 1992, 40, 945-948.