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Introduction
Despite having multiple meanings historically, epigenetics is the 
study of potentially heritable changes in chromatin and DNA or in 
the pattern of gene expression and function without modification 
of the underlying DNA sequence [1-5]. In the 1940s, the word 
epigenetics was coined by Conrad Waddington to link the fields 
of developmental biology and genetics and to describe the 
epigenetic landscape [6-11]. Epigenetics has various implications 
and links with: development and evolution as well as environment 
and heredity including epigenetic systems of inheritance 
[8,11,12]. Interactions between DNA and environment through 
chromatin modifications are responsible for expression of a 
normal phenotype and development of various pathologies [10].

Griffith and Mahler were the first to suggest that demethylation 
of DNA might have an important biological role and, in the year 
1969, they proposed that demethylation could provide a basis for 
long-term memory in the brain [6]. The epigenome, which is the 
bridge between the genome and phenotype, consists of the entire 
epigenetic code across all the cells in the body [2,10]. Epigenetic 
mechanisms include: DNA methylation, histone modification, 
positioning of histone variants, nucleosome remodeling in 
addition to small and non-coding RNAs [13].

The human epigenome project is expected to:

•	 Unravel the patterns of DNA methylation in different tissues.
•	 Determine whether the regulation of gene expression 

occurs at the level of DNA or chromatin or both, and,
•	 Provide high-resolution reference epigenetic maps [6,13].

Epigenetic changes such as histone methylation, DNA methylation 
and histone acetylation alter gene expression at the level of 
transcription by upregulation, downregulation or complete 
silencing of genes. Also, dysregulation of epigenetic events can 
be pathological leading to the development of cardiovascular 
diseases, neurological and metabolic disorders in addition to 
cancer. Thus, epigenetics plays a central role in many diseases 
[14].

The following epigenetic modifiers are genetically altered in 
patients with cancer: EZH2, IDH1, IDH2 and DNMT3A. These 
genetic modifiers provide new therapeutic targets for clinical 
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Abstract
Epigenetics links developmental biology, genetics and environment. Dysregulation 
of epigenetic events can lead to evolution of several diseases including cancer. 
Various types of epigenetic therapies can potentially treat many diseases such as 
myelodysplastic syndromes, solid tumors, autoimmune diseases and neurological 
disorders. The two main classes of epigenetic therapies are inhibitors of the enzymes 
DNA methyltransferase and histone deacetylase. Despite the progress achieved 
after introduction of epigenetic therapies, particularly the hypomethylating drugs 
azacitidine and decitabine, in the management of patients with myelodysplastic 
syndromes further efforts are needed to improve the outcome of these patients. 
This is an updated review on epigenetics, epigenetic targets and existing as well 
as evolving epigenetic therapeutics in myelodysplastic syndromes. However, the 
hypomethylating agents azacitidine and decitabine as well as histone deacetylase 
inhibitors will be thoroughly discussed.
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development [15]. Epigenetic events or modifications are 
frequently reversible, hence inhibition of epigenetic changes 
may be a valuable therapeutic potential [14,16,17]. Epigenetic 
and genetic abnormalities play vital roles in cancer initiation 
and progression by having frequent mutations [18]. Epigenetic 
alterations in cancer cells affect virtually all cellular pathways 
that are associated with tumorigenesis [19]. Epigenetic therapy 
is intended to reprogram neoplastic cells toward a normal state 
[18]. Epigenetic drugs can restore defective expression of genes 
involved in: cell cycle control, apoptosis, cell signaling, tumor 
cell invasion, metastases, angiogenesis, and immune recognition 
[19].

Diseases that can be potentially treated with epigenetic therapies 
include:

•	 Myelodysplastic syndromes (MDSs);
•	 Other hematologic malignancies (HMs) such as: multiple 

myeloma (MM), chronic myelomonocytic leukemia (CMML), 
acute myeloid leukemia (AML), Hodgkin lymphoma and 
cutaneous T-cell lymphoma;

•	 Metabolic and autoimmune disorders such as: 
diabetes mellitus, rheumatoid arthritis, systemic lupus 
erythromatosis, multiple sclerosis, systemic sclerosis and 
Sjögren's syndrome;

•	 Neurodegenerative and psychological disorders such as: 
Alzheimer's disease, Parkinson's disease, Huntington's 
disease and amyotrophic lateral sclerosis; and

•	 Miscellaneous disorders such as psoriasis, cardiovascular 
disorders and idiopathic pulmonary fibrosis [14-16,18,20-26].

There are several classes of epigenetic drugs. The main types of 
epigenetic therapies and examples of some types are included in 
Table 1 [14,15,18,22,27-33].

Epigenetic therapy is a novel therapeutic approach that 
modulates gene expression by targeting the: DNA methylation 
machinery, histone covalent modification and micro-RNAs 
(miRNAs) [20]. A major limitation of epigenetic therapy is the lack 
of specificity and the consequent global induction of epigenetic 
changes [20]. Treatment with epigenetic agents can reduce 
chemotherapy resistance in patients with HMs and solid tumors 
so epigenetic drugs can be added to cytotoxic chemotherapy or 
targeted therapy in order to derive chemosentitization benefits 
[34,35]. Methods that are used in the detection of methylation 
status of gene promoters and the association between 
methylation status and clinical parameters in patients with 
HMs include: methylation-specific polymerase chain reaction 
(PCR), methylation-specific restriction enzyme digestion, Hpall 
tiny fragment enrichment by ligation-mediated PCR, bisulphite 
sequencing and pyrosequencing [15].

MDSs
Introduction to MDSs
MDSs comprise a group of biologically and clinically heterogeneous 
clonal hematopoietic neoplasms characterized by: peripheral 
cytopenias, dysplastic changes in at least one hematopoietic 
lineage, ineffective hematopoiesis due to excessive apoptosis 

and aberrant myeloid differentiation, genetic instability, clonal 
evolution and increased risk of transformation into secondary 
AML [36-44]. MDSs manifest as heterogeneous diseases ranging 
from indolent conditions with considerable life expectancy to 
aggressive conditions resembling AML. Therefore, risk-adapted 
treatment strategy is mandatory for MDSs as these diseases have 
highly variable clinical courses [45].

Pathogenesis, etiology and associations
Recent studies in humans and in animal models have provided 
direct evidence that dysplastic hematopoiesis results from the 
interaction between: bone marrow (BM) microenvironment, 
hematopoietic stem cells, and stromal mesenchymal stem cells 
in the BM niche in patients with MDSs [46-54]. Additionally, 
epigenetic dysregulation plays an important role in the 
pathogenesis of MDSs [55]. Etiology and associations of MDSs are 
shown in Table 2 [40,56-63].

Cytogenetics and molecular genetics
Techniques that are used for the detection of cytogenetic 
abnormalities in MDSs include:

•	 Conventional or metaphase cytogenetics to detect visible 
chromosomal aberrations;

•	 Fluorescence in situ hybridization (FISH) to detect small and 
hidden chromosomal aberrations;

•	 Spectral karyotyping to detect unknown and complex 
chromosomal abnormalities;

•	 Single nucleotide polymorphism array (SNP-A) to detect 
cryptic and complex chromosomal aberrations;

•	 Microarray-based comparative genome hybridization (CGH) 
to detect uniparental disomy and copy number variation 
(CNV);

•	 Sequencing-based technologies such as next generation 
sequencing (NGS) to detect CNV and structural variants as 
well as unknown mutations and aberrations; and

•	 PCR [64,65].  Conventional cytogenetics and  FISH can detect 
abnormalities in chromosomes: 5, 7 and 8 while array-CGH 
and PCR can detect the following somatic mutations: ASXL1, 
EZH2, TP53, TET2, RUNX1, SF3B1 and DNMT3A [65].

Cytogenetic abnormalities, gene mutations and recurrent somatic 
mutations in MDSs are shown in Table 3 [42,62,66,67], Table 4 
[45,68,69] and Table 5 [40,45,62,68,70-73] respectively. MDSs 
are characterized by mutations in more than 40 genes, a complex 
structure of gene-gene interactions and extensive subclonal 
diversification [71,73]. The most frequently mutated genes in 
MDSs are: TET2, SF3B1, ASXL1, DNMT3A, SRSF2, U2AF1, RUNX1, 
TP53, EZH2, ZRSR2, STAG2, CBL, NRAS, JAK2, SETBP1, IDH1, IDH2 
and ETV6 [73-79]. The following mutated genes are considered 
epigenetic regulators: TET2, IDH1, IDH2, DNMT3A, ASXL1 and 
EZH2 [79]. Gene mutations that are independently associated 
with shorter survival and unfavorable outcome include: ASXL1, 
U2AF1, TP53, SRSF2, CBL, IDH2, SETBP1, DNMT3A, RUNX1 and 
EZH2 [75,76,80,81]. However, SF3B1 gene mutation has been 
associated with longer survival and favorable outcome [80,82]. 
Identification of somatic mutations in patients with MDSs suggests 
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Classes or types of epigenetic drugs  Examples
DNA methyltransferase inhibitors [DNMTIs] or 

demethylating agents Azacitidine, decitabine, zebularine, S-110 and SGI-1027

Histone deacetylase inhibitors [HDACIs] (5 classes: I, IIa, 
IIb, III and IV)

Vorinostat, panobinostat, entinostat, givinostat, pracinostat, belinostat, valproic acid, 
romidespsin, pivanex, CI-994 and ACY-1215

Histone acetylase/acetyltransferase inhibitors 
Histone demethylase inhibitors

Protein methyltransferase inhibitors
Sirtuin inhibitors and modulators

Bromodomain inhibitors

 Nucleosidic DNA methyltransferase inhibitors 6 thioguanine; fazarabine; pseudoisocitidine; 5 fluoro-2-deoxycitidine and 
5,6 dihydro-5-azacitidine 

Antisense oligonucleotide inhibitors of DNMTs
Inhibitors of protein binding to acetylated histone
Inhibitors of protein binding to methylated histone

Miscellaneous drugs that have epigenetic activities
Procainamide, hydrallazine, methotrexate, thalidomide, statins, neuroleptics, 

B-blockers, Fluoroquinolones, isotretinoin, cox-2 inhibitors, synthetic estrogens and 
general anesthetics. 

Table 1 Types and examples of epigenetic drugs.

Table 2 Etiology and associations of myelodysplastic syndromes.

new targets for therapeutic interventions [68]. For example 
TP53 mutations, which are less likely to respond to single agent 
lenalidomide, have been reported to occur in approximately 20% 
of patients with del 5q, low and intermediate I MDSs [45].

Diagnosis of MDSs using peripheral blood
Recently, several studies have shown that peripheral blood cell-
free DNA (PB-CF-DNA) is safer, easier and even more sensitive 
for genetic and epigenetic analyses than whole BM samples 

[70,83-87]. After obtaining PB-CF-DNA from plasma or serum, 
high resolution SNP-A is used for karyotyping then mutation 
analysis of genes is performed using PCR or sequencing (Sanger, 
parallel or targeted NGS) [83,85,87]. Studies have shown high 
concordance rates reaching 100% in cytogenetic or mutational 
profiles between PB and BM in patients with MDSs [83,86]. 
Mutations in the following genes can be determined by PB-CF-
DNA: SF3B1, DNMT3A, ASXL1, SRSF2, IDH1, IDH2, TET2, U2AF1, 
ZRSR2, RUNX1, ETV6, NRAS, KRAS, TP53, CBL, JAK2, MPL, CEBPα, 

1. Unknown etiology.
2. Old age; more than 50 years.
3. Male gender.
4. Obesity.
5. Tobacco use.
6. Alcohol intake.
7. Sweet syndrome; neutrophilic dermatosis.
8. Vitamin deficiencies:  - Folic acid
                                         - Vitamin-B12.
9. Infections:     - Human immunodeficiency virus.
                          - Tuberculosis.
                          - Brucellosis.
10. Occupational and environmental exposure: solvents, benzene, lead, arsenic, pesticides, herbicides, hair dyes, and agricultural chemicals.
11.     Autoimmune disorders:   - Systemic lupus erythromatosis. 
                                                - Fibrosing alveolitis. 
                                                 - Behcet syndrome. 
                                                 - Other vasculitis disorders and seronegative polyarthropathies
12.     Therapy-related myelodysplastic syndromes:         - Alkylating agents.
                                                                                                                - Topoisomerase II inhibitors.
                                                                                                                - Radiotherapy.                                        
13.      Bone marrow failure syndromes:  - Aplastic anemia.                             - Diamond Blackfan syndrome.                           
                                                                                  - Fanconi anemia.                             - Paroxysmal nocturnal hemoglobinuria.
                                                                                 - Dyskeratosis congenita.                - Congenital neutropenias.
14.      Genetic, familial and hereditary disorders: -  Ataxia telangiectasia                      -  Down's syndrome
                                                                                                    - Xeroderma pigmentosa                  - Trisomy 8 mosaicism
                                                                                                    - Bloom's syndrome                            - Neurofibromatosis
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Risk Category Examples
Very Good  del 11q; -Y

 Good  Normal cytogenetics; del 20q; del 5q; single or double; del 12p

 Intermediate  +8; del 7q; i17q; +19; +21; any other single or 
 double abnormality; independent clones

 Poor  -7; inv 3; del3q/t3q; 2 abnormalities including -7/del 7q; 
 complex cytogenetics (3 abnormalities)

 Very Poor  Complex cytogenetics: >3 abnormalities

Table 3 Cytogenetic abnormalities in myelodysplastic syndromes.

Mutated Genes Frequency (%) Prognosis

 SF3B1 15-30
(up to 80% in MDS-RARS) Good, favorable outcome with longer event free survival

 SRSF2 2-12 Poor with short overall survival
 U2AF1/U2AF35 5-12 Poor with rapid transformation into acute myeloid leukemia

 ZRSR2 5  Neutral
 DNMT3A
 TET2

 5-22
15-26

 Poor
 Neutral with no impact on survival

 IDH1/IDH2 4-11 Mixed evidence
 ASXL1
 EZH2 

10-20
3-7

Poor
Poor

 RUNX1
 TP53
 BCOR
 ETV6

5-10
5-10
5-6
3

 Poor
 Poor
 Poor
 Poor

 NRAS/KRAS 5-10  Poor

Table 4 Genetic mutations in myelodysplastic syndromes (MDSs).

- RARS: Refractory anaemia ring sideroblasts

 Pathway  Examples of genetic mutations
 DNA methylation

 (epigenetic regulatory genes)
- DNMT3A - IDH1
- TET 2 - IDH2

 DNA repair

- ATM - DLRE1C
- FANCL - BRCC3

- TP53
 

 Chromatin modification
- ASXL1
- EZH2

 
 Signal transduction

 (Kinases/RAS pathway)

- NRAS / KRAS
- CBL/NF1
- JAK2

- PTPN11
- FLT3

 Cohesion complex
- STAG2
- RAD21

- SMC1A/SMC3
- CTCF

 RNA splicing
 (splicing factor genes)

- SF3B1
- U2AF1
- SRSF2
- ZRSR2

Transcription factors and transcriptional regulation CEBPA
- RUNX1

- BCOR1/ BCORL1
- GATA2

- ETV6/EVI1

Table 5 Recurrent somatic mutations in myelodysplastic syndromes.

SETBP1, FLT3, BRAF and NPM1 [70,85-87]. PB-CF-DNA analysis 
has the following advantages:

•	 Detection of cytogenetic abnormalities and genetic 
mutations that predict evolution of new clones and disease 
progression,
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•	 Establishing the diagnosis of MDSs in patients with 
cytopenias,

•	 Obviating the need for repeated BM examinations 
particularly in elderly patients and those with hypocellular 
or fibrotic BMs, and

•	 Monitoring response to cytotoxic chemotherapy and 
targeted agents including epigenetic therapies [83,86,87].

New techniques in the diagnosis of MDSs
The following are new techniques that are helpful in establishing 
the diagnosis of MDSs:

•	 Immunophenotyping by flowcytometry of PB neutrophils 
and monocytes particularly in low-risk MDSs,

•	 Proliferation index of specific compartments of BM cells 
that reflects the rate of production of hematopoietic cells 
in MDSs, and

•	 Measurement of telomere length in PB leukocytes as 
shorter telomeres have been found to be associated with 
occupational exposure to paints and pesticides [88-90].

Therapeutic options in MDSs
Treatment of MDSs is selected based on: risk stratification by the 
international prognostic scoring index (IPSS) and the revised IPSS, 
transfusion needs, percentage of BM blasts and cytogenetic as 
well as mutational profiles [42]. The revised IPSS in patients with 
MDSs is shown in Table 6 [38-40]. Therapeutic options for low-

risk MDSs with <10% blasts include:
•	 Growth factors such as erythropoietin and granulocyte-

colony stimulating factor (G-CSF),
•	 Immune therapies including: corticosteroids, cyclosporine-A 

and antithymocyte globulin,
•	 Lenalidomide for 5q31,
•	 Decitabine and azacitidine,
•	 Iron chelation and blood transfusion,
•	 Imatinib for t5,12 and 5q33 variant with platelet-derived 

growth factor receptor (PDGFR)-β; and 
•	 Investigational therapies such as clofarabine   and 

homoharringtonine. 
•	 For higher-risk (HR) MDSs with ≥ 10% blasts and 

chromosome 7 abnormalities or complex cytogenetics, 
therapeutic options include:

•	 Decitabine and azacytidine,
•	 Intensive chemotherapy for younger patients and those with 

diploid karyotype,
•	 Allogeneic hematopoietic stem cell transplantation (HSCT),
•	 Imatinib for t5,12 and 5q33 variant with PDGFR-β,
•	 Iron chelation and blood transfusion; and
•	 Investigational therapies [37,39,40,42,56,91].

Epigenetic modifying agents that are used in patients with MDSs 
include:

Prognostic variable
Points

0 0.5 1 1.5 2 3 4
Cytogenetics Very good - Good - Intermediate Poor Very poor

Bone marrow blasts % ≤ 2 - >2 - 5% - 5% - 10% > 10 % -
Hemoglobin (g/dL) ≥ 10 - 8 - <10 < 8 - - -

Platelet count

× 109/L
≥ 100 50 - 100 <50 - - - -

Absolute neutrophil 
count

× 109/L

≥ 0.8 < 0.8 - - - - -

Table 6 The revised international prognostic scoring system (R-IPSS) for myelodysplastic syndromes.

Variable Grading Potential clinical consequences

Performance status Good
Poor

 Standard treatment including allogeneic HSCT
 Supportive care only

 Erythropoietin level Low
High

Treatment with erythropoietin stimulating agents
No treatment with erythropoietin stimulating agent in case of anemia

 Ferritin level High  Treatment with iron chelation
Prognostic scoring index

(IPSS/R-IPSS)
 Good risk
 Poor risk

 Supportive care only
 Hypomethylating agents and allogeneic HSCT

 Cytogenetics  Del 5q  Treatment with lenalidomide

 Genetic mutations

Good risk

Poor risk

Supportive care only

Standard treatment including allogeneic HSCT
Intensified surveillance or early pre-emptive therapy in otherwise good-risk 

MDSs (e.g., by R-IPSS)

Table 7 Current clinical picture of personalized medicine in MDSs.

● MDSs: myelodysplastic syndromes ● HSCT: hematopoietic stem cell transplantation ● IPSS: international prognostic scoring index ● R-IPSS: 
revised international prognostic scoring index
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•	 Demethylating agents such as: azacitidine licensed for  
Demethylating agents such as: azacitidine licensed for 
MDSs and AML, decitabine licensed for HR-MDSs and AML, 
and zebularine which is still investigational, and

•	 HDACIs which are still investigational and they include: 
panobinostat, vorinostat, entinostat, belinostat and 
romidepsin and valpoic acid [69].

Prognosis in MDSs
In patients with MDSs, prognosis is determined by:

•	 IPSS and R-IPSS,
•	 Age,
•	 Performance status,
•	 Comorbid medical conditions,
•	 Transfusion dependence, and
•	 Molecular biomarkers such as somatic mutations that can 

be detected by several methods including DNA sequencing 
[92].

Epigenetic Therapies in MDSs
Hypomethylating Agents (HMAs)
Epigenetic mechanisms such as abnormal DNA methylation are 
considered the first markers of tumorigenesis [93]. Methylation 
of the tumor suppressor gene CDKN2B is frequent in patients with 
MDSs and is usually acquired during disease progression [94]. 
DNA hypermethylation is well documented in the pathogenesis 
of MDSs [95,96]. Reversal of unfavorable methylation status 
in malignant cells has been a subject for epigenetic therapy of 
cancer using HMAs [93]. Reactivation by demethylation may halt 
disease progression [94]. Restoration of transcriptionally silenced 
genes by means of DNA methyltransferase inhibitors (DNMTIs) 
plays an important role in the current management of MDSs [93]. 
Thus, methylation status may serve a marker to monitor response 
to epigenetic therapies [96].

 Azacitidine: Azacitidine is a pyrimidine nucleoside analog that was 
chemically synthesized and characterized by Frantisek Sorm et al 
in Czechoslovakia in the 1960s. It differs from cytosine primarily 
by the presence of nitrogen at position 5 [97]. Azacitidine is a 
DNMTI that leads to reduction of DNA methylation in patients 
with MDSs [93]. Azacitidine was the first HMA to be approved 
by the food and drug authority in the United States of America 
(USA-FDA) for the treatment of all subtypes of MDSs in the year 

2004, then 5 years later it was granted extended approval for use 
in HR-MDSs [94,97-99]. Studies have shown that the following 
groups of patients with MDSs appear to have particular benefit:

•	 Chromosome 7 abnormalities including monosomy 7,

•	 Trisomy 8,

•	 Diploid karyotype, and

•	 HR-del 5q harboring TP53 mutations [94,100]. Azacitidine 
is indicated not only in MDSs but also in AML and CMML 
[94,97-99,101-107].

Azacitidine is a disease modifying agent that has changed the 
history of MDSs and it has been shown to impact positively all 
the 3 cell lines [94,97]. At high doses, azacitidine is cytotoxic and 
its cytotoxicity results from incorporation into DNA and RNA, 
while at lower doses the drug has hypomethylating effects as it 
induces differentiation and demethylation resulting in restoration 
of normal growth control and differentiation into hematopoietic 
cells [94,97,99]. The effectiveness of azacitidine was first 
demonstrated in the following 3 studies:

•	 A single randomized controlled trial comparing azacitidine 
administered subcutaneously (SC) with best supportive 
care (observational group) which showed 16% response 
rate in the study group and 0.0% response rate in the 
observational group, and

•	 Two single arm studies, in one azacitidine was administered 
intravenously (IV) and in the other it was given SC and 
these 2 studies showed response rates of 13% and 19% 
respectively and these responses were sustained for 11 and 
17 months respectively [97,99,102].

Several studies have shown that azacitidine can:

•	 Prolong survival,

•	 Prolong time to leukemic transformation from 12 to 21 
months,

•	 Reduce transfusion requirements of blood products, and

•	 Improve quality of life, while maintaining a relatively safe 
toxicity profile even in elderly individuals [95,97,101,103-
105,108-112].

Complete remissions (CRs) can be encountered in up to 25% of 
patients, but unfortunately some patients do not respond to 
azacitidine possibly due to having inadequate plasma levels of the 
drug [94]. In order  to improve response rates further, azacitidine 

Genetic mutations, pathway or target Drugs in clinical trials
IDH1/IDH2/R132 FT-2102, AG-881, ivosidenib, venetoclax and enasidenib 

 SF3B1, SRSF2, U2AF1, ZRSR2  H3B-8800 (oral)
 TET 2  Ascorbic acid (oral and intravenous) and hypomethylating agents

 TP53 including 5q- syndrome  APR-246 (intravenous) and decitabine 
 Epidermal growth factor receptor  Erlotinib

 Dual inhibitor [phosphoinositide-3 kinase and polo-like kinase]  Rigosertib
 Programmed cell death 1 protein (PD-1) and PD-1 ligand-1(PD-

1L-1)  PD-1 and PD-1L1 inhibitors

 Bone marrow megakaryocytes  Eltrombopag and romiplostim

Table 8 Drugs in clinical trials and future therapies for myelodysplastic syndromes.
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can be combined with lenalidomide, histone deacetylase 
inhibitors (HDACIs) and growth factors [97,100]. Although 
prolonged use of the drug is generally practiced, patients may 
benefit from a limited number of cycles of azacitidine [113]. The 
drug can induce complete and partial responses in approximately 
50% of patients, these responses are usually not durable or 
sustainable as most responding patients lose their responses 
within 2 years [106,113,114].

Azacitidine can be given IV or SC. The standard and approved 
dose of 75 mg/m2/day for 7 days every 28 days has been 
proven to show objective response rates, while the other dose 
schedule of 100 mg/m2/day for 5 days has not been approved 
although this schedule is given taking into consideration 
convenience and logistic factors [97-99,102,109,110]. Azacitidine 
is rapidly absorbed after SC administration and maximum plasma 
concentration is reached within 30 minutes of SC administration 
and 10 minutes of IV administration [97,99]. The drug is widely 
distributed in tissues. Its bioavailability after SC administration 
is 89% of that after IV administration and plasma half-life is 
approximately 41 minutes after SC administration and about 22 
minutes after IV administration [97,99].

The adverse effects of azacitidine include:
•	 Gastrointestinal tract (GIT) manifestations such as: nausea, 

vomiting, diarrhea, and constipation; 
•	  Myelosuppression: neutropenia causing febrile neutropenia 

and infections in addition to thrombocytopenia causing 
petechiae, ecchymoses and other bleeding complications;

•	 Injection site reactions; 
•	 Fever and rigors; 
•	 Headache, dizziness and arthralgia;
•	 Liver dysfunction; 
•	 Renal failure particularly in patients with hypotension and 

sepsis; and
•	 Treatment-related mortality (TRM) [94,98,99,101,113-115].

Oral azacitidine: In early phase clinical trials, oral azacitidine (CC-
486) has been shown to be biologically and clinically active in 
patients with MDSs. Hence, it is currently evaluated in ongoing 
phase III clinical trials [108,115]. Oral azacitidine improves 
convenience and eliminates injection-site reactions and it 
enables testing of novel longer term low-dose schedules that 
enhance therapeutic activity of the drug by increasing exposure 
to circulating malignant cells [108].

Oral azacitidine can be given at doses ranging from 300 mg to 400 
mg per day for 14-21 days each cycle [108,115,116]. In patients 
with MDSs (including lower-risk groups and patients with pre-
treatment thrombocytopenia), AML and CMML, oral azacitidine 
in extended dosing regimens has been shown to be associated 
with significant DNA hypomethylation effect and overall 
response rates (ORRs) ranging from 35% to 73% [108,115-118]. 
The adverse effects of oral azacitidine include: GIT disturbances, 
myelosuppression, bleeding and TRM [108,115,116].

Response to azacitidine: In patients with MDSs treated with 
azacitidine, several studies have shown that the following factors 

predict response, longer overall survival (OS) and longer duration 
of response: red blood cell transfusion requirements, performance 
status, circulating blast cells, doubling of platelet count after first 
cycle of therapy, type of induction therapy given prior to HSCT, 
karyotype particularly HR cytogenetics, preceding 5q- syndrome, 
therapy-related MDSs, and mutational profile particularly TET2, 
SRSF2, TP53 and KDM6A mutations [45,114,119,120]. However, 
negative outcome, shorter OS and shorter duration of response 
to azacitidine have been reported with CDKN2A mutations [121-
125]. Despite the presence of several publications indicating the 
presence of predictive biomarkers for response to azacitidine, 
a study that included 128 patients with MDSs and AML treated 
with azacitidine has shown no clear biomarkers for response to 
azacitidine and survival that could be identified [121-123].

In patients with MDSs treated with azacitidine, P53 expression 
which is a surrogate for the presence of TP53 mutation does 
not have negative impact on treatment response indicating 
that response to azacitidine is independent of P53 expression 
in patients with HR-MDSs [126]. Thus, the combination of 
azacitidine and lenalidomide may be beneficial in patients with 
del 5q harboring TP53 mutations [126].

Decitabine
Decitabine, 2-deoxy-5-azacitidine, is similar to azacitidine in 
structure and inhibition of the enzyme DNMT, but has different 
mechanisms of action [73,127-129]. Decitabine, a cytosine analog, 
is cytotoxic at high doses and has DNA demethylating activity 
at low doses [130]. In the year 2006, decitabine was approved 
by the USA-FDA for the treatment of de novo, secondary and 
therapy-related MDSs [127]. Although the antitumor activity of 
decitabine is not fully understood, it may involve one or more of 
the following:

•	 Reversal of cancer-associated hypermethylation events,
•	 Reactivation of genes that are responsible for cellular 

differentiation,
•	 Stimulation or induction of immune responses,
•	 Induction of DNA-damage response pathways, 
•	 Augmentation of stem cell renewal, and 
•	 Changes in the rate of apoptosis or apoptotic response 

pathways [127].

Decitabine has been used in the treatment of HR-MDSs, CMML, 
and AML particularly in elderly individuals [127,128,131-134]. It 
can be given: in upfront setting in the treatment of MDSs patients, 
in the maintenance therapy after allogeneic HSCT, and with 
fludarabine and total body irradiation (TBI) conditioning therapy 
prior to HSCT [127-129,132,133,135]. In patients with MDSs, 
decitabine has been used in combination with the following 
medications:

•	 Traditional Chinese medicine,
•	 Fludarabine and TBI conditioning therapy,
•	 Aclarubicin hydrochloride, cytosine arabinoside and G-CSF,
•	 Low dose chemotherapy particularly cytosine arabinoside,
•	 Tosedostat, and
•	 Valproic acid.
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However, in patients with MDSs and AML, the combinations 
of decitabine with these medications have yielded variable 
responses [55,73,129,131,132,134,136-139].

The side effects of decitabine include: hematologic toxicity with 
neutropenia causing febrile neutropenia and infections such 
as pneumonia and thrombocytopenia causing bleeding from 
various sites; GIT toxicity such as nausea, vomiting, diarrhea 
and mucositis; hyperbilirubinemia; cardiovascular toxicity; renal 
failure; fatigue; and hair loss [127,128,133-135].

Several studies and 2 meta-analyses have shown superiority of 
azacitidine to decitabine in the treatment of patients with MDSs 
[127]. Hence, the use of decitabine in the treatment of HR-MDSs 
is not recommended after failure of azacitidine due to short 
duration of response and poor OS [136,137]. Also, the addition of 
valproic acid to decitabine has not been associated with improved 
outcome in patients with MDSs [131].

Disappearance of TP53 mutation has been shown to be an 
indication of response to decitabine in patients with MDSs and 
AML [128]. Recovery of platelet count by the second cycle of 
decitabine therapy can be used as an early predictor marker of 
improved survival and an increased response rate [138]. Several 
studies have sought to identify biomarkers that may predict 
response to decitabine such as: DNA methylation changes, 
expression of miR-29b, and specific genetic mutations such as: 
DNMT3A, IDH1, IDH2 and TET2 [128]. However, controversy 
still exists regarding the predictive value of these mutations. 
Additionally, none of the above suggested biomarkers is currently 
used to guide decitabine treatment for individual patients [128].

HDACIs in MDSs
In the nucleus, DNA is wound around 4 core histone proteins to 
form nucleosomes that, when compacted, form the condensed 
structure of chromatin [140]. Histones can be modified by 
several processes that include: acetylation, methylation, 
phosphorylation, sumoylation, ubiquitination, and citrullination 
[140]. Modifications of DNA or histones via methylation or 
acetylation lead to gene silencing and altered physiology relevant 
to MDSs [141]. Acetylation, which is one of the main histone 
modifications associated with gene expression, is controlled by 
2 groups of enzymes: histone acetyltransferases and histone 
deacetylases (HDACs) [140,142].

Classes, mechanisms of action and resistance to 
HDACIs
HDACIs are epigenetic agents that act by modifying gene 
expression to restore the normal differentiation or death 
programs of transformed cells [143]. They regulate the acetylation 
of histones as well as non-histone protein targets [142]. There are 
5 classes of HDACIs: class I, class IIA, class IIB, class III and class IV 
[140]. HDACIs have various mechanisms of action that include:

•	 Chromatin remodeling thus permitting re-expression of 
tumor suppressor genes that are abnormally suppressed or 
silenced in cancer cells,

•	 Relaxation of DNA, induction of DNA damage and inhibition 
of DNA repair,

•	 Interference with or inhibition of chaperone protein 
functions,

•	 Upregulation of endogenous inhibitors of cell cycle 
progression such as p21 and disruption of cell cycle 
checkpoints thus causing cell cycle arrest,

•	 Generation of free radicals and induction of autophagy,
•	 Promotion of apoptosis by inhibition of anti-apoptotic 

proteins, and
•	 Inhibition of angiogenesis and proteasome function 

[142,143].

Unfortunately, resistance to HDACIs frequently evolves and the 
following mechanisms of resistance have been described:

•	 Increased expression of multidrug resistance-associated 
proteins;

•	 Enhanced expression of p21 cell cycle protein;
•	 Increased expression of thioredoxin;
•	 Enhanced expression of anti-apoptotic proteins and inability 

to upregulate pro-apoptotic proteins;
•	 Alterations of HDAC protein levels;
•	 Increased protein signaling via the following pathways: 

mitogen-activated protein kinase, phosphoinositide 
3-kinase, as well as signal transducer and activator of 
transcription; and

•	 Activation of nuclear factor kappa light chain enhancer 
signaling pathway and acetylation of p65 [140].

Clinical activity of HDACIs
In general, when used as single agents, HDACIs have shown only 
modest clinical activity in the treatment of patients with MDSs. 
However, marked responses have been observed in selected 
subsets of patients and once HDACIs are used in combination 
with other agents particularly HMAs [142,144]. Nevertheless, 
a recently published systematic review and a meta-analysis 
that included 7 clinical studies comprising 922 patients; 458 
patients treated with HMAs alone and 464 patients treated 
with combination of HMAs and HDACIs; showed no significant 
differences in CR rates, hematologic improvement, ORRs, OS and 
toxicities between patients treated with HMAs alone or combined 
therapy [138]. Additionally, while significant results have been 
achieved with the use of HDACIs in the treatment of lymphomas 
and MM, efficacy in patients with myeloid malignancies has 
remained limited [145].

Obviously, many issues related to HDACIs remain incompletely 
understood and pose clinical and translational challenges [141]. 
Hopefully, the recent advances in disease biology and the 
design of more specific third generation HDACIs may drive the 
future clinical development of HDACIs in patients with myeloid 
malignancies in particular [146].

Specific HDACIs
Vorinostat: Vorinostat, suberoyalanilide hydroxamic acid, is a 
HDACI that was approved by the US-FDA in December 2006 
for the treatment of relapsed or refractory cutaneous T-cell 
lymphoma [147-149]. It promotes protein acetylation; modulates 
gene expression; and induces differentiation, growth arrest and 
apoptosis of tumor cells [148,149]. It has shown promising 
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clinical activity against certain hematologic malignancies and 
solid tumors such as: MDSs, AML, CMML, MM, cutaneous T-cell 
lymphoma, diffuse large B-cell lymphoma, Hodgkin's lymphoma, 
in additions to carcinomas of the: breast, prostate, colon and lung 
[147-154].

In patients with MDSs, CMML and AML, the efficacy of vorinostat 
as a single agent is limited but several phase I and II clinical 
trials using combinations of vorinostat with conventional 
chemotherapeutic agents such as idarubicin and cytarabine or 
investigational drugs such as HMAs or lenalidomide have shown 
more promising results [147,148,150,154]. However, in patients 
with MDSs and AML, the use of vorinostat in combination with 
bortezomib or alvocidib has not shown any objective clinical 
responses [151,153].

As a single agent or in various drug combinations, vorinostat 
has acceptable toxicity profile with mainly gastrointestinal and 
constitutional side effects [148,154]. The main adverse effects 
of the drug include: nausea, vomiting, diarrhea, dehydration, 
anorexia, fatigue, cytopenias including thrombocytopenia, 
prolongation of QT interval on electrocardiogram, abnormal 
liver profile and metabolic disturbances including hypokalemia, 
hyperglycemia and hypophosphatemia [147,148,150-154].

Panobinostat: Panibinostat is a potent oral pan-deacetylase 
inhibitor of HDAC enzymes implicated in cancer development 
and progression that has been approved for the treatment 
of MM in the USA, Japan and Europe [155,156]. It modulates 
the acetylation of histone proteins and protein chaperones 
in malignant cells and its epigenetic regulation is primarily 
modulated through inhibition of class I histone deacetylase 
enzymes leading to: increased histone acetylation, relaxation of 
chromatin and alteration of expression of certain genes including 
tumor suppressor genes [155].

Phase I and II clinical trials on the use of panobinostat in low 
or intermediate risk MDSs have shown either limited or no 
meaningful clinical activity [157,158]. However, the use of the 
drug in combination with azacitidine in the treatment of MDSs, 
CMML and AML has shown variable clinical activity [159-161]. 
Additionally, the use of panobinostat in the maintenance therapy 
after allogeneic HSCT in patients with HR-MDSs and AML has 
been shown to prolong OS and to reduce rate of relapse of the 
primary disease [162]. The following adverse effects have been 
reported with the use of panobinostat: constitutional symptoms, 
GIT upset, BM suppression, infections, neuropathy and metabolic 
disturbances [155,159-162].

Romidepsin: Romidepsin (depsipeptide) is a bicyclic peptide that 
showed class I selective HDACI activity in the year 1998. Subsequently, 
it was approved by the USA-FDA for the treatment of cutaneous 
T-cell lymphoma [163,164]. Promising results have emerged from 
early clinical trials supporting the use of romidepsin in conjunction 
with other drugs for the treatment of other types of lymphoma, MM 
as well as certain solid tumors [163]. As monotherapy in unselected 
patients with MDSs and AML, romidepsin has shown limited clinical 
activity [164]. However, its use in patients with core binding factor 
AML has shown differential anti-leukemic and molecular activity 
[165]. The adverse effects of romidepsin include: GIT toxicity, 

myelosuppression with subsequent bleeding and infectious 
complications, constitutional symptoms, and metabolic as well as 
electrolytic disturbances [164].

Valproic acid (phenylbutyrate): Valproic acid (VPA), which has 
been known as an epileptic agent for many years, is a short-
chain fatty acid and a HDACI that can reduce proliferation and 
induce differentiation of myeloid blast cells in patients with MDSs 
and AML particularly when given in combination with all-trans 
retinoic acid (ATRA) [166-169]. In patients with MDSs and AML, 
VPA as a single agent has shown limited clinical activity, but 
once used in combination with other drugs; such as: azacitidine, 
ATRA, bortezomib, hydralazine, decitabine or cytotoxic 
chemotherapeutic agents; it has been reported to be clinically 
active due to synergistic anti-leukemic activity and positive effects 
on blood indices with a significant increase in platelet count in 
particular [131,166-175]. Although VPA is generally well tolerated 
with modest side effects, moderate to severe hematologic toxicity 
including myelosuppression and evolution of myelodysplasia has 
been reported with the prolonged use of the drug [166,176-
182]. The adverse effects are more pronounced once the drug 
is given in combination with other agents and these include 
various degrees of myelosuppression, evolution of MDSs and 
neurotoxicity [131,168,169].

Other HDACIs: Unfortunately, clinical trials combining entinostat 
or pracinostat with azacitidine in the treatment of patients with 
MDSs and AML have not shown any additional beneficial effects 
[183,184]. LBH589 is a novel HDACI that inhibits proliferation and 
induces apoptosis in tumor cell lines [185]. A phase I study on 
the IV use of LBH589 in a limited number of patients with HMs 
including AML and MDSs has shown consistent but transient anti-
leukemic and biological effects [185]. A phase II clinical trial on 
the use of belinostat in the treatment of 21 patients with MDSs 
showed only 5% ORR with significant grade 3-4 toxicities so the 
study was ultimately terminated [186].

Challenges in the Current Management 
of MDSs
Thrombocytopenia and its future therapies in 
MDSs
Thrombocytopenia, which is commonly encountered in patients 
with MDSs, has multifactorial etiology and its associated 
bleeding complications represent a major cause of morbidity and 
mortality [187-190]. The thrombopoietin agonists, eltrombopag 
and romiplostim, have shown clinical activity in trials performed 
in patients with MDSs and thus they represent a potential 
alternative therapeutic option to platelet transfusions [187,191]. 
Several phase I and phase II clinical trials have shown not only 
safety but also efficacy of eltrombopag in the treatment of 
thrombocytopenia in patients with advanced MDSs [190,192-
194]. Eltrombopag has been shown to increase megakaryocytic 
differentiation thus leading to the formation of normal 
megakaryocytic clones [195]. A single phase II clinical trial on the 
use of romiplostim in patients with low and intermediate-risk 
MDSs receiving azacitidine therapy has shown clinical benefit 
[189]. More prospective and ramdomized clinical trials on the 
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use of thrombopoietin agonists in different subtypes of MDSs are 
needed to: determine their future role as adjunctive therapies in 
patients with MDSs receiving novel agents including epigenetic 
therapies and prove or disprove the concern that these agents 
may increase the risks of clonal evolution and transformation into 
AML [196,197].

Personalized medicine in MDSs and its 
challenges
The main problems encountered in the treatment of patients 
with MDSs are:

•	 Unremarkable effects of conventional therapies,
•	 Only a minority of patients with MDSs are eligible for 

allogeneic HSCT which is still the only proven curative 
therapeutic modality, and

•	 Despite the superiority of HMAs when compared to HDACIs, 
treatment with both HMAs and HDACIs has shown limited 
efficacy [198].

Additional challenges include:
•	 despite the molecular advances in MDSs, response rates 

and their durations are suboptimal as CR rates are less than 
20% and they rarely exceed 2 years;

•	 over the last 12 years, only 3 drugs (azacitidine, decitabine 
and lenalidomide) have been approved for the treatment 
of MDSs; and

•	 the progress in the therapeutics of MDSs is lagging behind 
those of MM, lymphomas and acute lymphoblastic leukemia 
[199-201]. The current clinical picture of personalized 

medicine in MDSs is illustrated in Table 7 [39,45,200-206]. 
Examples of the investigational drugs; mainly in phase I/II 
clinical trials; and the potential future therapies for MDSs 
are included in Table 8 [187,190,196,206-223].

Conclusions and Future Directions
MDSs comprise a group of clonal disorders that are clinically 
and biologically heterogeneous. Dysplastic hematopoiesis 
and epigenetic dysregulation are major players in the complex 
pathogenesis of MDSs. Despite the progress achieved in the 
molecular biology and epigenetics of MDSs, the response rates to 
the currently available epigenetic therapies are still suboptimal. 
Additionally, no new novel therapies have been approved for the 
treatment of MDSs over the last 12 years.

As single agents, the HMAs azacitidine and decitabine have 
already shown remarkable clinical activity, but complete 
responses are encountered in about 20% of patients and these 
responses hardly last longer than 2 years. However, once these 
epigenetic therapies are used in combination with cytotoxic 
chemotherapeutic agents or other novel therapies, response 
rates can improve further.

Despite having several classes of HDACIs with various mechanisms 
of action, these agents have shown only modest activity in the 
treatment of patients with MDSs, possibly due to the frequently 
evolving drug resistance. Hopefully, the ongoing clinical trials on 
several novel agents targeting various pathological pathways may 
ultimately translate into real progress in the clinical arena so that 
patients with various types of MDSs can enjoy cure or at least 
more durable responses.
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