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Introduction
Despite	having	multiple	meanings	historically,	epigenetics	is	the	
study	of	potentially	heritable	changes	in	chromatin	and	DNA	or	in	
the	pattern	of	gene	expression	and	function	without	modification	
of	 the	underlying	DNA	 sequence	 [1-5].	 In	 the	 1940s,	 the	word	
epigenetics	was	coined	by	Conrad	Waddington	to	link	the	fields	
of	 developmental	 biology	 and	 genetics	 and	 to	 describe	 the	
epigenetic	landscape	[6-11].	Epigenetics	has	various	implications	
and	links	with:	development	and	evolution	as	well	as	environment	
and	 heredity	 including	 epigenetic	 systems	 of	 inheritance	
[8,11,12].	 Interactions	between	DNA	and	environment	 through	
chromatin	 modifications	 are	 responsible	 for	 expression	 of	 a	
normal	phenotype	and	development	of	various	pathologies	[10].

Griffith	and	Mahler	were	the	first	to	suggest	that	demethylation	
of	DNA	might	have	an	important	biological	role	and,	in	the	year	
1969,	they	proposed	that	demethylation	could	provide	a	basis	for	
long-term	memory	in	the	brain	[6].	The	epigenome,	which	is	the	
bridge	between	the	genome	and	phenotype,	consists	of	the	entire	
epigenetic	code	across	all	the	cells	in	the	body	[2,10].	Epigenetic	
mechanisms	 include:	 DNA	 methylation,	 histone	 modification,	
positioning	 of	 histone	 variants,	 nucleosome	 remodeling	 in	
addition	to	small	and	non-coding	RNAs	[13].

The	human	epigenome	project	is	expected	to:

• Unravel	the	patterns	of	DNA	methylation	in	different	tissues.
• Determine	 whether	 the	 regulation	 of	 gene	 expression	

occurs	at	the	level	of	DNA	or	chromatin	or	both,	and,
• Provide	high-resolution	reference	epigenetic	maps	[6,13].

Epigenetic	changes	such	as	histone	methylation,	DNA	methylation	
and	 histone	 acetylation	 alter	 gene	 expression	 at	 the	 level	 of	
transcription	 by	 upregulation,	 downregulation	 or	 complete	
silencing	of	genes.	Also,	dysregulation	of	epigenetic	events	can	
be	 pathological	 leading	 to	 the	 development	 of	 cardiovascular	
diseases,	 neurological	 and	 metabolic	 disorders	 in	 addition	 to	
cancer.	 Thus,	 epigenetics	 plays	 a	 central	 role	 in	many	 diseases	
[14].

The	 following	 epigenetic	 modifiers	 are	 genetically	 altered	 in	
patients	 with	 cancer:	 EZH2,	 IDH1,	 IDH2	 and	 DNMT3A.	 These	
genetic	 modifiers	 provide	 new	 therapeutic	 targets	 for	 clinical	
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Abstract
Epigenetics links	developmental	biology,	genetics	and	environment.	Dysregulation	
of	 epigenetic	events	 can	 lead	 to	evolution	of	 several	diseases	 including	 cancer.	
Various	types	of	epigenetic	therapies	can	potentially	treat	many	diseases	such	as	
myelodysplastic	syndromes,	solid	tumors,	autoimmune	diseases	and	neurological	
disorders.	The	two	main	classes	of	epigenetic	therapies	are	inhibitors	of	the	enzymes	
DNA	methyltransferase	and	histone	deacetylase.	Despite	 the	progress	achieved	
after	introduction	of	epigenetic	therapies,	particularly	the	hypomethylating	drugs	
azacitidine	and	decitabine,	 in	the	management	of	patients	with	myelodysplastic	
syndromes	further	efforts	are	needed	to	improve	the	outcome	of	these	patients.	
This	is	an	updated	review	on	epigenetics,	epigenetic	targets	and	existing	as	well	
as	evolving	epigenetic	therapeutics	in	myelodysplastic	syndromes.	However,	the	
hypomethylating	agents	azacitidine	and	decitabine	as	well	as	histone	deacetylase	
inhibitors	will	be	thoroughly	discussed.

Keywords:	 Epigenetics;	 Myelodysplastic	 syndromes;	 Genetic	 mutations;	
Hypomethylating	agents;	Histone	deacetylase	inhibitors;	Maintenance	therapy
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development	 [15].	 Epigenetic	 events	 or	 modifications	 are	
frequently	 reversible,	 hence	 inhibition	 of	 epigenetic	 changes	
may	 be	 a	 valuable	 therapeutic	 potential	 [14,16,17].	 Epigenetic	
and	 genetic	 abnormalities	 play	 vital	 roles	 in	 cancer	 initiation	
and	 progression	 by	 having	 frequent	mutations	 [18].	 Epigenetic	
alterations	 in	 cancer	 cells	 affect	 virtually	 all	 cellular	 pathways	
that	are	associated	with	tumorigenesis	[19].	Epigenetic	therapy	
is	intended	to	reprogram	neoplastic	cells	toward	a	normal	state	
[18].	Epigenetic	drugs	can	restore	defective	expression	of	genes	
involved	 in:	 cell	 cycle	 control,	 apoptosis,	 cell	 signaling,	 tumor	
cell	invasion,	metastases,	angiogenesis,	and	immune	recognition	
[19].

Diseases	that	can	be	potentially	treated	with	epigenetic	therapies	
include:

• Myelodysplastic	syndromes	(MDSs);
• Other	 hematologic	 malignancies	 (HMs)	 such	 as:	 multiple	

myeloma	(MM),	chronic	myelomonocytic	leukemia	(CMML),	
acute	 myeloid	 leukemia	 (AML),	 Hodgkin	 lymphoma	 and	
cutaneous	T-cell	lymphoma;

• Metabolic	 and	 autoimmune	 disorders	 such	 as:	
diabetes	 mellitus,	 rheumatoid	 arthritis,	 systemic	 lupus	
erythromatosis,	 multiple	 sclerosis,	 systemic	 sclerosis	 and	
Sjögren's	syndrome;

• Neurodegenerative	 and	 psychological	 disorders	 such	 as:	
Alzheimer's	 disease,	 Parkinson's	 disease,	 Huntington's	
disease	and	amyotrophic	lateral	sclerosis;	and

• Miscellaneous	 disorders	 such	 as	 psoriasis,	 cardiovascular	
disorders	and	idiopathic	pulmonary	fibrosis	[14-16,18,20-26].

There	are	several	classes	of	epigenetic	drugs.	The	main	types	of	
epigenetic	therapies	and	examples	of	some	types	are	included	in	
Table 1 [14,15,18,22,27-33].

Epigenetic	 therapy	 is	 a	 novel	 therapeutic	 approach	 that	
modulates	 gene	 expression	 by	 targeting	 the:	 DNA	methylation	
machinery,	 histone	 covalent	 modification	 and	 micro-RNAs	
(miRNAs)	[20].	A	major	limitation	of	epigenetic	therapy	is	the	lack	
of	specificity	and	the	consequent	global	induction	of	epigenetic	
changes	 [20].	 Treatment	 with	 epigenetic	 agents	 can	 reduce	
chemotherapy	resistance	in	patients	with	HMs	and	solid	tumors	
so	epigenetic	drugs	can	be	added	to	cytotoxic	chemotherapy	or	
targeted	therapy	 in	order	to	derive	chemosentitization	benefits	
[34,35].	Methods	that	are	used	in	the	detection	of	methylation	
status	 of	 gene	 promoters	 and	 the	 association	 between	
methylation	 status	 and	 clinical	 parameters	 in	 patients	 with	
HMs	 include:	 methylation-specific	 polymerase	 chain	 reaction	
(PCR),	 methylation-specific	 restriction	 enzyme	 digestion,	 Hpall	
tiny	 fragment	 enrichment	 by	 ligation-mediated	 PCR,	 bisulphite	
sequencing	and	pyrosequencing	[15].

MDSs
Introduction to MDSs
MDSs	comprise	a	group	of	biologically	and	clinically	heterogeneous	
clonal	 hematopoietic	 neoplasms	 characterized	 by:	 peripheral	
cytopenias,	 dysplastic	 changes	 in	 at	 least	 one	 hematopoietic	
lineage,	 ineffective	 hematopoiesis	 due	 to	 excessive	 apoptosis	

and	 aberrant	 myeloid	 differentiation,	 genetic	 instability,	 clonal	
evolution	 and	 increased	 risk	 of	 transformation	 into	 secondary	
AML	[36-44].	MDSs	manifest	as	heterogeneous	diseases	ranging	
from	 indolent	 conditions	 with	 considerable	 life	 expectancy	 to	
aggressive	 conditions	 resembling	 AML.	 Therefore,	 risk-adapted	
treatment	strategy	is	mandatory	for	MDSs	as	these	diseases	have	
highly	variable	clinical	courses	[45].

Pathogenesis, etiology and associations
Recent	 studies	 in	humans	and	 in	animal	models	have	provided	
direct	 evidence	 that	 dysplastic	 hematopoiesis	 results	 from	 the	
interaction	 between:	 bone	 marrow	 (BM)	 microenvironment,	
hematopoietic	stem	cells,	and	stromal	mesenchymal	stem	cells	
in	 the	 BM	 niche	 in	 patients	 with	 MDSs	 [46-54].	 Additionally,	
epigenetic	 dysregulation	 plays	 an	 important	 role	 in	 the	
pathogenesis	of	MDSs	[55].	Etiology	and	associations	of	MDSs	are	
shown	in	Table 2 [40,56-63].

Cytogenetics and molecular genetics
Techniques	 that	 are	 used	 for	 the	 detection	 of	 cytogenetic	
abnormalities	in	MDSs	include:

• Conventional	 or	metaphase	 cytogenetics	 to	 detect	 visible	
chromosomal	aberrations;

• Fluorescence	in	situ	hybridization	(FISH)	to	detect	small	and	
hidden	chromosomal	aberrations;

• Spectral	 karyotyping	 to	 detect	 unknown	 and	 complex	
chromosomal	abnormalities;

• Single	 nucleotide	 polymorphism	 array	 (SNP-A)	 to	 detect	
cryptic	and	complex	chromosomal	aberrations;

• Microarray-based	comparative	genome	hybridization	(CGH)	
to	 detect	 uniparental	 disomy	 and	 copy	 number	 variation	
(CNV);

• Sequencing-based	 technologies	 such	 as	 next	 generation	
sequencing	(NGS)	to	detect	CNV	and	structural	variants	as	
well	as	unknown	mutations	and	aberrations;	and

• PCR	[64,65].		Conventional	cytogenetics	and		FISH	can	detect	
abnormalities	in	chromosomes:	5,	7	and	8	while	array-CGH	
and	PCR	can	detect	the	following	somatic	mutations:	ASXL1,	
EZH2,	TP53,	TET2,	RUNX1,	SF3B1	and	DNMT3A	[65].

Cytogenetic	abnormalities,	gene	mutations	and	recurrent	somatic	
mutations	 in	MDSs	are	shown	 in	Table 3	 [42,62,66,67],	Table 4 
[45,68,69]	 and	 Table 5	 [40,45,62,68,70-73]	 respectively.	 MDSs	
are	characterized	by	mutations	in	more	than	40	genes,	a	complex	
structure	 of	 gene-gene	 interactions	 and	 extensive	 subclonal	
diversification	 [71,73].	 The	 most	 frequently	 mutated	 genes	 in	
MDSs	are:	TET2,	SF3B1,	ASXL1,	DNMT3A,	SRSF2,	U2AF1,	RUNX1,	
TP53,	EZH2,	ZRSR2,	STAG2,	CBL,	NRAS,	JAK2,	SETBP1,	IDH1,	IDH2	
and	ETV6	[73-79].	The	following	mutated	genes	are	considered	
epigenetic	 regulators:	 TET2,	 IDH1,	 IDH2,	 DNMT3A,	 ASXL1	 and	
EZH2	 [79].	 Gene	 mutations	 that	 are	 independently	 associated	
with	 shorter	 survival	 and	unfavorable	outcome	 include:	ASXL1,	
U2AF1,	TP53,	 SRSF2,	CBL,	 IDH2,	 SETBP1,	DNMT3A,	RUNX1	and	
EZH2	 [75,76,80,81].	 However,	 SF3B1	 gene	 mutation	 has	 been	
associated	with	 longer	 survival	 and	 favorable	outcome	 [80,82].	
Identification	of	somatic	mutations	in	patients	with	MDSs	suggests	
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Classes or types of epigenetic drugs  Examples
DNA	methyltransferase	inhibitors	[DNMTIs]	or	

demethylating	agents Azacitidine,	decitabine,	zebularine,	S-110	and	SGI-1027

Histone	deacetylase	inhibitors	[HDACIs]	(5	classes:	I,	IIa,	
IIb,	III	and	IV)

Vorinostat,	panobinostat,	entinostat,	givinostat,	pracinostat,	belinostat,	valproic	acid,	
romidespsin,	pivanex,	CI-994	and	ACY-1215

Histone	acetylase/acetyltransferase	inhibitors	
Histone	demethylase	inhibitors

Protein	methyltransferase	inhibitors
Sirtuin	inhibitors	and	modulators

Bromodomain	inhibitors

	Nucleosidic	DNA	methyltransferase	inhibitors	 6	thioguanine;	fazarabine;	pseudoisocitidine;	5	fluoro-2-deoxycitidine	and	
5,6	dihydro-5-azacitidine	

Antisense	oligonucleotide	inhibitors	of	DNMTs
Inhibitors	of	protein	binding	to	acetylated	histone
Inhibitors	of	protein	binding	to	methylated	histone

Miscellaneous	drugs	that	have	epigenetic	activities
Procainamide,	hydrallazine,	methotrexate,	thalidomide,	statins,	neuroleptics,	

B-blockers,	Fluoroquinolones,	isotretinoin,	cox-2	inhibitors,	synthetic	estrogens	and	
general	anesthetics.	

Table 1 Types	and	examples	of	epigenetic	drugs.

Table 2 Etiology	and	associations	of	myelodysplastic	syndromes.

new	 targets	 for	 therapeutic	 interventions	 [68].	 For	 example	
TP53	mutations,	which	are	less	likely	to	respond	to	single	agent	
lenalidomide,	have	been	reported	to	occur	in	approximately	20%	
of	patients	with	del	5q,	low	and	intermediate	I	MDSs	[45].

Diagnosis of MDSs using peripheral blood
Recently,	several	studies	have	shown	that	peripheral	blood	cell-
free	DNA	 (PB-CF-DNA)	 is	 safer,	 easier	 and	 even	more	 sensitive	
for	 genetic	 and	 epigenetic	 analyses	 than	 whole	 BM	 samples	

[70,83-87].	 After	 obtaining	 PB-CF-DNA	 from	 plasma	 or	 serum,	
high	 resolution	 SNP-A	 is	 used	 for	 karyotyping	 then	 mutation	
analysis	of	genes	is	performed	using	PCR	or	sequencing	(Sanger,	
parallel	 or	 targeted	 NGS)	 [83,85,87].	 Studies	 have	 shown	 high	
concordance	 rates	 reaching	 100%	 in	 cytogenetic	 or	mutational	
profiles	 between	 PB	 and	 BM	 in	 patients	 with	 MDSs	 [83,86].	
Mutations	 in	 the	 following	genes	can	be	determined	by	PB-CF-
DNA:	SF3B1,	DNMT3A,	ASXL1,	SRSF2,	IDH1,	IDH2,	TET2,	U2AF1,	
ZRSR2,	RUNX1,	ETV6,	NRAS,	KRAS,	TP53,	CBL,	JAK2,	MPL,	CEBPα,	

1.	Unknown	etiology.
2.	Old	age;	more	than	50	years.
3.	Male	gender.
4.	Obesity.
5.	Tobacco	use.
6.	Alcohol	intake.
7.	Sweet	syndrome;	neutrophilic	dermatosis.
8.	Vitamin	deficiencies:		-	Folic	acid
																																									-	Vitamin-B12.
9.	Infections:					-	Human	immunodeficiency	virus.
																										-	Tuberculosis.
																										-	Brucellosis.
10.	Occupational	and	environmental	exposure:	solvents,	benzene,	lead,	arsenic,	pesticides,	herbicides,	hair	dyes,	and	agricultural	chemicals.
11.					Autoimmune	disorders:			-	Systemic	lupus	erythromatosis.	
																																																-	Fibrosing	alveolitis.	
																																																	-	Behcet	syndrome.	
																																																	-	Other	vasculitis	disorders	and	seronegative	polyarthropathies
12.					Therapy-related	myelodysplastic	syndromes:									-	Alkylating	agents.
																																																																																																																-	Topoisomerase	II	inhibitors.
																																																																																																																-	Radiotherapy.																																								
13.						Bone	marrow	failure	syndromes:		-	Aplastic	anemia.																													-	Diamond	Blackfan	syndrome.																											
																																																																																		-	Fanconi	anemia.																													-	Paroxysmal	nocturnal	hemoglobinuria.
																																																																																	-	Dyskeratosis	congenita.																-	Congenital	neutropenias.
14.						Genetic,	familial	and	hereditary	disorders:	-		Ataxia	telangiectasia															    			-		Down's	syndrome
																																																																																																				-	Xeroderma	pigmentosa																		-	Trisomy	8	mosaicism
																																																																																																				-	Bloom's	syndrome																												-	Neurofibromatosis



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2019
Vol.3 No.1:1

Journal of Molecular Genetics and Medicine

4 This article is available in: http://www.imedpub.com/journal-molecular-genetics-medicine/

Risk Category Examples
Very	Good 	del	11q;	-Y

 Good 	Normal	cytogenetics;	del	20q;	del	5q;	single	or	double;	del	12p

	Intermediate 	+8;	del	7q;	i17q;	+19;	+21;	any	other	single	or	
	double	abnormality;	independent	clones

	Poor 	-7;	inv	3;	del3q/t3q;	2	abnormalities	including	-7/del	7q;	
	complex	cytogenetics	(3	abnormalities)

 Very	Poor	 	Complex	cytogenetics:	>3	abnormalities

Table 3 Cytogenetic	abnormalities	in	myelodysplastic	syndromes.

Mutated Genes Frequency (%) Prognosis

	SF3B1 15-30
(up	to	80%	in	MDS-RARS) Good,	favorable	outcome	with	longer	event	free	survival

	SRSF2 2-12 Poor	with	short	overall	survival
	U2AF1/U2AF35 5-12 Poor	with	rapid	transformation	into	acute	myeloid	leukemia

	ZRSR2 5 	Neutral
	DNMT3A
	TET2

	5-22
15-26

	Poor
	Neutral	with	no	impact	on	survival

	IDH1/IDH2 4-11 Mixed	evidence
	ASXL1
	EZH2	

10-20
3-7

Poor
Poor

	RUNX1
	TP53
	BCOR
	ETV6

5-10
5-10
5-6
3

	Poor
	Poor
	Poor
	Poor

	NRAS/KRAS 5-10 	Poor

Table 4 Genetic	mutations	in	myelodysplastic	syndromes	(MDSs).

-	RARS:	Refractory	anaemia	ring	sideroblasts

 Pathway  Examples of genetic mutations
 DNA	methylation

	(epigenetic	regulatory	genes)
-	DNMT3A	-	IDH1
-	TET	2	-	IDH2

	DNA	repair

-	ATM	-	DLRE1C
-	FANCL	-	BRCC3

-	TP53
 

 Chromatin	modification
-	ASXL1
-	EZH2

 
	Signal	transduction

	(Kinases/RAS	pathway)

-	NRAS	/	KRAS
-	CBL/NF1
-	JAK2

-	PTPN11
-	FLT3

 Cohesion	complex
-	STAG2
-	RAD21

-	SMC1A/SMC3
-	CTCF

	RNA	splicing
	(splicing	factor	genes)

-	SF3B1
-	U2AF1
-	SRSF2
-	ZRSR2

Transcription	factors	and	transcriptional	regulation CEBPA
-	RUNX1

-	BCOR1/	BCORL1
-	GATA2

-	ETV6/EVI1

Table 5 Recurrent	somatic	mutations	in	myelodysplastic	syndromes.

SETBP1,	 FLT3,	 BRAF	 and	NPM1	 [70,85-87].	 PB-CF-DNA	 analysis	
has	the	following	advantages:

• Detection	 of	 cytogenetic	 abnormalities	 and	 genetic	
mutations	that	predict	evolution	of	new	clones	and	disease	
progression,
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• Establishing	 the	 diagnosis	 of	 MDSs	 in	 patients	 with	
cytopenias,

• Obviating	 the	 need	 for	 repeated	 BM	 examinations	
particularly	in	elderly	patients	and	those	with	hypocellular	
or	fibrotic	BMs,	and

• Monitoring	 response	 to	 cytotoxic	 chemotherapy	 and	
targeted	agents	including	epigenetic	therapies	[83,86,87].

New techniques in the diagnosis of MDSs
The	following	are	new	techniques	that	are	helpful	in	establishing	
the	diagnosis	of	MDSs:

• Immunophenotyping	 by	 flowcytometry	 of	 PB	 neutrophils	
and	monocytes	particularly	in	low-risk	MDSs,

• Proliferation	 index	 of	 specific	 compartments	 of	 BM	 cells	
that	reflects	the	rate	of	production	of	hematopoietic	cells	
in	MDSs,	and

• Measurement	 of	 telomere	 length	 in	 PB	 leukocytes	 as	
shorter	 telomeres	have	been	found	to	be	associated	with	
occupational	exposure	to	paints	and	pesticides	[88-90].

Therapeutic options in MDSs
Treatment	of	MDSs	is	selected	based	on:	risk	stratification	by	the	
international	prognostic	scoring	index	(IPSS)	and	the	revised	IPSS,	
transfusion	needs,	percentage	of	BM	blasts	 and	 cytogenetic	as	
well	as	mutational	profiles	[42].	The	revised	IPSS	in	patients	with	
MDSs	 is	shown	in	Table 6 [38-40].	Therapeutic	options	for	 low-

risk	MDSs	with	<10%	blasts	include:
• Growth	 factors	 such	 as	 erythropoietin	 and	 granulocyte-

colony	stimulating	factor	(G-CSF),
• Immune	therapies	including:	corticosteroids,	cyclosporine-A	

and	antithymocyte	globulin,
• Lenalidomide	for	5q31,
• Decitabine	and	azacitidine,
• Iron	chelation	and	blood	transfusion,
• Imatinib	 for	 t5,12	 and	 5q33	 variant	 with	 platelet-derived	

growth	factor	receptor	(PDGFR)-β;	and	
• Investigational	 therapies	 such	 as	 clofarabine	 	 and	

homoharringtonine.	
• For	 higher-risk	 (HR)	 MDSs	 with	 ≥	 10%	 blasts	 and	

chromosome	 7	 abnormalities	 or	 complex	 cytogenetics,	
therapeutic	options	include:

• Decitabine	and	azacytidine,
• Intensive	chemotherapy	for	younger	patients	and	those	with	

diploid	karyotype,
• Allogeneic	hematopoietic	stem	cell	transplantation	(HSCT),
• Imatinib	for	t5,12	and	5q33	variant	with	PDGFR-β,
• Iron	chelation	and	blood	transfusion;	and
• Investigational	therapies	[37,39,40,42,56,91].

Epigenetic	modifying	 agents	 that	 are	 used	 in	 patients	with	MDSs	
include:

Prognostic variable
Points

0 0.5 1 1.5 2 3 4
Cytogenetics Very	good - Good - Intermediate Poor Very	poor

Bone	marrow	blasts	% ≤	2 - >2	-	5% - 5%	-	10% >	10	% -
Hemoglobin	(g/dL) ≥	10 - 8	-	<10 <	8 - - -

Platelet	count

×	109/L
≥	100 50	-	100 <50 - - - -

Absolute	neutrophil	
count

×	109/L

≥	0.8 <	0.8 - - - - -

Table 6 The	revised	international	prognostic	scoring	system	(R-IPSS)	for	myelodysplastic	syndromes.

Variable Grading Potential clinical consequences

Performance	status Good
Poor

	Standard	treatment	including	allogeneic	HSCT
	Supportive	care	only

	Erythropoietin	level Low
High

Treatment	with	erythropoietin	stimulating	agents
No	treatment	with	erythropoietin	stimulating	agent	in	case	of	anemia

	Ferritin	level	 High 	Treatment	with	iron	chelation
Prognostic	scoring	index

(IPSS/R-IPSS)
	Good	risk
	Poor	risk

	Supportive	care	only
	Hypomethylating	agents	and	allogeneic	HSCT

	Cytogenetics 	Del	5q 	Treatment	with	lenalidomide

	Genetic	mutations

Good	risk

Poor	risk

Supportive	care	only

Standard	treatment	including	allogeneic	HSCT
Intensified	surveillance	or	early	pre-emptive	therapy	in	otherwise	good-risk	

MDSs	(e.g.,	by	R-IPSS)

Table 7 Current	clinical	picture	of	personalized	medicine	in	MDSs.

●	MDSs:	myelodysplastic	syndromes	●	HSCT:	hematopoietic	stem	cell	transplantation	●	IPSS:	international	prognostic	scoring	index	●	R-IPSS:	
revised	international	prognostic	scoring	index
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• Demethylating	 agents	 such	 as:	 azacitidine	 licensed	 for		
Demethylating	 agents	 such	 as:	 azacitidine	 licensed	 for	
MDSs	and	AML,	decitabine	licensed	for	HR-MDSs	and	AML,	
and	zebularine	which	is	still	investigational,	and

• HDACIs	 which	 are	 still	 investigational	 and	 they	 include:	
panobinostat,	 vorinostat,	 entinostat,	 belinostat	 and	
romidepsin	and	valpoic	acid	[69].

Prognosis in MDSs
In	patients	with	MDSs,	prognosis	is	determined	by:

• IPSS	and	R-IPSS,
• Age,
• Performance	status,
• Comorbid	medical	conditions,
• Transfusion	dependence,	and
• Molecular	biomarkers	such	as	somatic	mutations	that	can	

be	detected	by	several	methods	including	DNA	sequencing	
[92].

Epigenetic Therapies in MDSs
Hypomethylating Agents (HMAs)
Epigenetic	mechanisms	such	as	abnormal	DNA	methylation	are	
considered	the	first	markers	of	tumorigenesis	[93].	Methylation	
of	the	tumor	suppressor	gene	CDKN2B	is	frequent	in	patients	with	
MDSs	 and	 is	 usually	 acquired	 during	 disease	 progression	 [94].	
DNA	hypermethylation	 is	well	documented	 in	the	pathogenesis	
of	 MDSs	 [95,96].	 Reversal	 of	 unfavorable	 methylation	 status	
in	malignant	 cells	has	been	a	 subject	 for	epigenetic	 therapy	of	
cancer	using	HMAs	[93].	Reactivation	by	demethylation	may	halt	
disease	progression	[94].	Restoration	of	transcriptionally	silenced	
genes	by	means	of	DNA	methyltransferase	 inhibitors	 (DNMTIs)	
plays	an	important	role	in	the	current	management	of	MDSs	[93].	
Thus,	methylation	status	may	serve	a	marker	to	monitor	response	
to	epigenetic	therapies	[96].

 Azacitidine: Azacitidine	is	a	pyrimidine	nucleoside	analog	that	was	
chemically	synthesized	and	characterized	by	Frantisek	Sorm	et	al	
in	Czechoslovakia	in	the	1960s.	It	differs	from	cytosine	primarily	
by	 the	 presence	of	 nitrogen	 at	 position	 5	 [97].	 Azacitidine	 is	 a	
DNMTI	 that	 leads	 to	 reduction	of	DNA	methylation	 in	 patients	
with	MDSs	 [93].	Azacitidine	was	 the	first	HMA	 to	be	 approved	
by	the	food	and	drug	authority	 in	the	United	States	of	America	
(USA-FDA)	for	the	treatment	of	all	subtypes	of	MDSs	in	the	year	

2004,	then	5	years	later	it	was	granted	extended	approval	for	use	
in	HR-MDSs	 [94,97-99].	 Studies	 have	 shown	 that	 the	 following	
groups	of	patients	with	MDSs	appear	to	have	particular	benefit:

• Chromosome	7	abnormalities	including	monosomy	7,

• Trisomy	8,

• Diploid	karyotype,	and

• HR-del	5q	harboring	TP53	mutations	 [94,100].	Azacitidine	
is	 indicated	not	only	 in	MDSs	but	also	 in	AML	and	CMML	
[94,97-99,101-107].

Azacitidine	 is	 a	 disease	modifying	 agent	 that	 has	 changed	 the	
history	of	MDSs	and	 it	has	been	shown	to	 impact	positively	all	
the	3	cell	lines	[94,97].	At	high	doses,	azacitidine	is	cytotoxic	and	
its	 cytotoxicity	 results	 from	 incorporation	 into	 DNA	 and	 RNA,	
while	at	lower	doses	the	drug	has	hypomethylating	effects	as	it	
induces	differentiation	and	demethylation	resulting	in	restoration	
of	normal	growth	control	and	differentiation	into	hematopoietic	
cells	 [94,97,99].	 The	 effectiveness	 of	 azacitidine	 was	 first	
demonstrated	in	the	following	3	studies:

• A	single	randomized	controlled	trial	comparing	azacitidine	
administered	 subcutaneously	 (SC)	 with	 best	 supportive	
care	 (observational	 group)	 which	 showed	 16%	 response	
rate	 in	 the	 study	 group	 and	 0.0%	 response	 rate	 in	 the	
observational	group,	and

• Two	single	arm	studies,	in	one	azacitidine	was	administered	
intravenously	 (IV)	 and	 in	 the	 other	 it	 was	 given	 SC	 and	
these	 2	 studies	 showed	 response	 rates	 of	 13%	 and	 19%	
respectively	and	these	responses	were	sustained	for	11	and	
17	months	respectively	[97,99,102].

Several	studies	have	shown	that	azacitidine	can:

• Prolong	survival,

• Prolong	 time	 to	 leukemic	 transformation	 from	 12	 to	 21	
months,

• Reduce	transfusion	requirements	of	blood	products,	and

• Improve	quality	of	 life,	while	maintaining	a	 relatively	safe	
toxicity	 profile	 even	 in	 elderly	 individuals	 [95,97,101,103-
105,108-112].

Complete	remissions	(CRs)	can	be	encountered	in	up	to	25%	of	
patients,	 but	 unfortunately	 some	 patients	 do	 not	 respond	 to	
azacitidine	possibly	due	to	having	inadequate	plasma	levels	of	the	
drug	[94].	In	order		to	improve	response	rates	further,	azacitidine	

Genetic mutations, pathway or target Drugs in clinical trials
IDH1/IDH2/R132	 FT-2102,	AG-881,	ivosidenib,	venetoclax	and	enasidenib	

 SF3B1,	SRSF2,	U2AF1,	ZRSR2	 	H3B-8800	(oral)
 TET	2	 	Ascorbic	acid	(oral	and	intravenous)	and	hypomethylating	agents

 TP53	including	5q-	syndrome 	APR-246	(intravenous)	and	decitabine	
 Epidermal	growth	factor	receptor 	Erlotinib

 Dual	inhibitor	[phosphoinositide-3	kinase	and	polo-like	kinase] 	Rigosertib
	Programmed	cell	death	1	protein	(PD-1)	and	PD-1	ligand-1(PD-

1L-1) 	PD-1	and	PD-1L1	inhibitors

	Bone	marrow	megakaryocytes 	Eltrombopag	and	romiplostim

Table 8 Drugs	in	clinical	trials	and	future	therapies	for	myelodysplastic	syndromes.
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can	 be	 combined	 with	 lenalidomide,	 histone	 deacetylase	
inhibitors	 (HDACIs)	 and	 growth	 factors	 [97,100].	 Although	
prolonged	 use	 of	 the	 drug	 is	 generally	 practiced,	 patients	may	
benefit	from	a	limited	number	of	cycles	of	azacitidine	[113].	The	
drug	can	induce	complete	and	partial	responses	in	approximately	
50%	 of	 patients,	 these	 responses	 are	 usually	 not	 durable	 or	
sustainable	 as	 most	 responding	 patients	 lose	 their	 responses	
within	2	years	[106,113,114].

Azacitidine	 can	 be	 given	 IV	 or	 SC.	 The	 standard	 and	 approved	
dose	 of	 75	 mg/m2/day	 for	 7	 days	 every	 28	 days	 has	 been	
proven	 to	show	objective	response	 rates,	while	 the	other	dose	
schedule	of	 100	mg/m2/day	 for	5	days	has	not	been	approved	
although	 this	 schedule	 is	 given	 taking	 into	 consideration	
convenience	and	logistic	factors	[97-99,102,109,110].	Azacitidine	
is	rapidly	absorbed	after	SC	administration	and	maximum	plasma	
concentration	is	reached	within	30	minutes	of	SC	administration	
and	10	minutes	of	IV	administration	[97,99].	The	drug	is	widely	
distributed	 in	 tissues.	 Its	 bioavailability	 after	 SC	 administration	
is	 89%	 of	 that	 after	 IV	 administration	 and	 plasma	 half-life	 is	
approximately	41	minutes	after	SC	administration	and	about	22	
minutes	after	IV	administration	[97,99].

The	adverse	effects	of	azacitidine	include:
• Gastrointestinal	tract	(GIT)	manifestations	such	as:	nausea,	

vomiting,	diarrhea,	and	constipation;	
• 	Myelosuppression:	neutropenia	causing	febrile	neutropenia	

and	 infections	 in	 addition	 to	 thrombocytopenia	 causing	
petechiae,	ecchymoses	and	other	bleeding	complications;

• Injection	site	reactions;	
• Fever	and	rigors;	
• Headache,	dizziness	and	arthralgia;
• Liver	dysfunction;	
• Renal	failure	particularly	in	patients	with	hypotension	and	

sepsis;	and
• Treatment-related	mortality	(TRM)	[94,98,99,101,113-115].

Oral azacitidine: In	early	phase	clinical	trials,	oral	azacitidine	(CC-
486)	 has	 been	 shown	 to	 be	 biologically	 and	 clinically	 active	 in	
patients	with	MDSs.	Hence,	 it	 is	currently	evaluated	 in	ongoing	
phase	 III	 clinical	 trials	 [108,115].	 Oral	 azacitidine	 improves	
convenience	 and	 eliminates	 injection-site	 reactions	 and	 it	
enables	 testing	 of	 novel	 longer	 term	 low-dose	 schedules	 that	
enhance	therapeutic	activity	of	the	drug	by	increasing	exposure	
to	circulating	malignant	cells	[108].

Oral	azacitidine	can	be	given	at	doses	ranging	from	300	mg	to	400	
mg	per	day	for	14-21	days	each	cycle	[108,115,116].	In	patients	
with	MDSs	 (including	 lower-risk	 groups	 and	 patients	with	 pre-
treatment	thrombocytopenia),	AML	and	CMML,	oral	azacitidine	
in	extended	dosing	 regimens	has	been	shown	to	be	associated	
with	 significant	 DNA	 hypomethylation	 effect	 and	 overall	
response	rates	(ORRs)	ranging	from	35%	to	73%	[108,115-118].	
The	adverse	effects	of	oral	azacitidine	include:	GIT	disturbances,	
myelosuppression,	bleeding	and	TRM	[108,115,116].

Response to azacitidine: In	 patients	 with	 MDSs	 treated	 with	
azacitidine,	several	studies	have	shown	that	the	following	factors	

predict	response,	longer	overall	survival	(OS)	and	longer	duration	
of	response:	red	blood	cell	transfusion	requirements,	performance	
status,	circulating	blast	cells,	doubling	of	platelet	count	after	first	
cycle	of	therapy,	type	of	 induction	therapy	given	prior	to	HSCT,	
karyotype	particularly	HR	cytogenetics,	preceding	5q-	syndrome,	
therapy-related	MDSs,	and	mutational	profile	particularly	TET2,	
SRSF2,	TP53	and	KDM6A	mutations	[45,114,119,120].	However,	
negative	outcome,	shorter	OS	and	shorter	duration	of	response	
to	azacitidine	have	been	reported	with	CDKN2A	mutations	[121-
125].	Despite	the	presence	of	several	publications	indicating	the	
presence	 of	 predictive	 biomarkers	 for	 response	 to	 azacitidine,	
a	study	that	included	128	patients	with	MDSs	and	AML	treated	
with	azacitidine	has	shown	no	clear	biomarkers	for	response	to	
azacitidine	and	survival	that	could	be	identified	[121-123].

In	patients	with	MDSs	 treated	with	 azacitidine,	 P53	expression	
which	 is	 a	 surrogate	 for	 the	 presence	 of	 TP53	 mutation	 does	
not	 have	 negative	 impact	 on	 treatment	 response	 indicating	
that	 response	 to	 azacitidine	 is	 independent	 of	 P53	 expression	
in	 patients	 with	 HR-MDSs	 [126].	 Thus,	 the	 combination	 of	
azacitidine	and	 lenalidomide	may	be	beneficial	 in	patients	with	
del	5q	harboring	TP53	mutations	[126].

Decitabine
Decitabine,	 2-deoxy-5-azacitidine,	 is	 similar	 to	 azacitidine	 in	
structure	and	inhibition	of	the	enzyme	DNMT,	but	has	different	
mechanisms	of	action	[73,127-129].	Decitabine,	a	cytosine	analog,	
is	 cytotoxic	 at	 high	 doses	 and	 has	 DNA	 demethylating	 activity	
at	 low	doses	 [130].	 In	 the	year	2006,	decitabine	was	approved	
by	 the	 USA-FDA	 for	 the	 treatment	 of	 de	 novo,	 secondary	 and	
therapy-related	MDSs	 [127].	Although	the	antitumor	activity	of	
decitabine	is	not	fully	understood,	it	may	involve	one	or	more	of	
the	following:

• Reversal	of	cancer-associated	hypermethylation	events,
• Reactivation	 of	 genes	 that	 are	 responsible	 for	 cellular	

differentiation,
• Stimulation	or	induction	of	immune	responses,
• Induction	of	DNA-damage	response	pathways,	
• Augmentation	of	stem	cell	renewal,	and	
• Changes	 in	 the	 rate	 of	 apoptosis	 or	 apoptotic	 response	

pathways	[127].

Decitabine	has	been	used	in	the	treatment	of	HR-MDSs,	CMML,	
and	AML	particularly	in	elderly	individuals	[127,128,131-134].	It	
can	be	given:	in	upfront	setting	in	the	treatment	of	MDSs	patients,	
in	 the	 maintenance	 therapy	 after	 allogeneic	 HSCT,	 and	 with	
fludarabine	and	total	body	irradiation	(TBI)	conditioning	therapy	
prior	 to	 HSCT	 [127-129,132,133,135].	 In	 patients	 with	 MDSs,	
decitabine	 has	 been	 used	 in	 combination	 with	 the	 following	
medications:

• Traditional	Chinese	medicine,
• Fludarabine	and	TBI	conditioning	therapy,
• Aclarubicin	hydrochloride,	cytosine	arabinoside	and	G-CSF,
• Low	dose	chemotherapy	particularly	cytosine	arabinoside,
• Tosedostat,	and
• Valproic	acid.
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However,	 in	 patients	 with	 MDSs	 and	 AML,	 the	 combinations	
of	 decitabine	 with	 these	 medications	 have	 yielded	 variable	
responses	[55,73,129,131,132,134,136-139].

The	side	effects	of	decitabine	include:	hematologic	toxicity	with	
neutropenia	 causing	 febrile	 neutropenia	 and	 infections	 such	
as	 pneumonia	 and	 thrombocytopenia	 causing	 bleeding	 from	
various	 sites;	 GIT	 toxicity	 such	 as	 nausea,	 vomiting,	 diarrhea	
and	mucositis;	hyperbilirubinemia;	cardiovascular	toxicity;	renal	
failure;	fatigue;	and	hair	loss	[127,128,133-135].

Several	 studies	and	2	meta-analyses	have	shown	superiority	of	
azacitidine	to	decitabine	in	the	treatment	of	patients	with	MDSs	
[127].	Hence,	the	use	of	decitabine	in	the	treatment	of	HR-MDSs	
is	 not	 recommended	 after	 failure	 of	 azacitidine	 due	 to	 short	
duration	of	response	and	poor	OS	[136,137].	Also,	the	addition	of	
valproic	acid	to	decitabine	has	not	been	associated	with	improved	
outcome	in	patients	with	MDSs	[131].

Disappearance	 of	 TP53	 mutation	 has	 been	 shown	 to	 be	 an	
indication	of	response	to	decitabine	 in	patients	with	MDSs	and	
AML	 [128].	 Recovery	 of	 platelet	 count	 by	 the	 second	 cycle	 of	
decitabine	therapy	can	be	used	as	an	early	predictor	marker	of	
improved	survival	and	an	increased	response	rate	[138].	Several	
studies	 have	 sought	 to	 identify	 biomarkers	 that	 may	 predict	
response	 to	 decitabine	 such	 as:	 DNA	 methylation	 changes,	
expression	of	miR-29b,	 and	 specific	genetic	mutations	 such	as:	
DNMT3A,	 IDH1,	 IDH2	 and	 TET2	 [128].	 However,	 controversy	
still	 exists	 regarding	 the	 predictive	 value	 of	 these	 mutations.	
Additionally,	none	of	the	above	suggested	biomarkers	is	currently	
used	to	guide	decitabine	treatment	for	individual	patients	[128].

HDACIs in MDSs
In	the	nucleus,	DNA	is	wound	around	4	core	histone	proteins	to	
form	nucleosomes	that,	when	compacted,	 form	the	condensed	
structure	 of	 chromatin	 [140].	 Histones	 can	 be	 modified	 by	
several	 processes	 that	 include:	 acetylation,	 methylation,	
phosphorylation,	 sumoylation,	 ubiquitination,	 and	 citrullination	
[140].	 Modifications	 of	 DNA	 or	 histones	 via	 methylation	 or	
acetylation	lead	to	gene	silencing	and	altered	physiology	relevant	
to	MDSs	 [141].	 Acetylation,	 which	 is	 one	 of	 the	 main	 histone	
modifications	associated	with	gene	expression,	 is	 controlled	by	
2	 groups	 of	 enzymes:	 histone	 acetyltransferases	 and	 histone	
deacetylases	(HDACs)	[140,142].

Classes, mechanisms of action and resistance to 
HDACIs
HDACIs	 are	 epigenetic	 agents	 that	 act	 by	 modifying	 gene	
expression	 to	 restore	 the	 normal	 differentiation	 or	 death	
programs	of	transformed	cells	[143].	They	regulate	the	acetylation	
of	histones	as	well	as	non-histone	protein	targets	[142].	There	are	
5	classes	of	HDACIs:	class	I,	class	IIA,	class	IIB,	class	III	and	class	IV	
[140].	HDACIs	have	various	mechanisms	of	action	that	include:

• Chromatin	 remodeling	 thus	 permitting	 re-expression	 of	
tumor	suppressor	genes	that	are	abnormally	suppressed	or	
silenced	in	cancer	cells,

• Relaxation	of	DNA,	induction	of	DNA	damage	and	inhibition	
of	DNA	repair,

• Interference	 with	 or	 inhibition	 of	 chaperone	 protein	
functions,

• Upregulation	 of	 endogenous	 inhibitors	 of	 cell	 cycle	
progression	 such	 as	 p21	 and	 disruption	 of	 cell	 cycle	
checkpoints	thus	causing	cell	cycle	arrest,

• Generation	of	free	radicals	and	induction	of	autophagy,
• Promotion	 of	 apoptosis	 by	 inhibition	 of	 anti-apoptotic	

proteins,	and
• Inhibition	 of	 angiogenesis	 and	 proteasome	 function	

[142,143].

Unfortunately,	 resistance	 to	HDACIs	 frequently	evolves	and	 the	
following	mechanisms	of	resistance	have	been	described:

• Increased	 expression	 of	 multidrug	 resistance-associated	
proteins;

• Enhanced	expression	of	p21	cell	cycle	protein;
• Increased	expression	of	thioredoxin;
• Enhanced	expression	of	anti-apoptotic	proteins	and	inability	

to	upregulate	pro-apoptotic	proteins;
• Alterations	of	HDAC	protein	levels;
• Increased	 protein	 signaling	 via	 the	 following	 pathways:	

mitogen-activated	 protein	 kinase,	 phosphoinositide	
3-kinase,	 as	 well	 as	 signal	 transducer	 and	 activator	 of	
transcription;	and

• Activation	 of	 nuclear	 factor	 kappa	 light	 chain	 enhancer	
signaling	pathway	and	acetylation	of	p65	[140].

Clinical activity of HDACIs
In	general,	when	used	as	single	agents,	HDACIs	have	shown	only	
modest	clinical	activity	in	the	treatment	of	patients	with	MDSs.	
However,	 marked	 responses	 have	 been	 observed	 in	 selected	
subsets	 of	 patients	 and	 once	 HDACIs	 are	 used	 in	 combination	
with	 other	 agents	 particularly	 HMAs	 [142,144].	 Nevertheless,	
a	 recently	 published	 systematic	 review	 and	 a	 meta-analysis	
that	 included	 7	 clinical	 studies	 comprising	 922	 patients;	 458	
patients	 treated	 with	 HMAs	 alone	 and	 464	 patients	 treated	
with	 combination	 of	 HMAs	 and	HDACIs;	 showed	 no	 significant	
differences	in	CR	rates,	hematologic	improvement,	ORRs,	OS	and	
toxicities	between	patients	treated	with	HMAs	alone	or	combined	
therapy	 [138].	 Additionally,	 while	 significant	 results	 have	 been	
achieved	with	the	use	of	HDACIs	in	the	treatment	of	lymphomas	
and	 MM,	 efficacy	 in	 patients	 with	 myeloid	 malignancies	 has	
remained	limited	[145].

Obviously,	many	 issues	 related	 to	HDACIs	 remain	 incompletely	
understood	and	pose	clinical	and	translational	challenges	[141].	
Hopefully,	 the	 recent	 advances	 in	 disease	 biology	 and	 the	
design	of	more	 specific	 third	 generation	HDACIs	may	drive	 the	
future	clinical	development	of	HDACIs	 in	patients	with	myeloid	
malignancies	in	particular	[146].

Specific HDACIs
Vorinostat: Vorinostat,	 suberoyalanilide	 hydroxamic	 acid,	 is	 a	
HDACI	 that	 was	 approved	 by	 the	 US-FDA	 in	 December	 2006	
for	 the	 treatment	 of	 relapsed	 or	 refractory	 cutaneous	 T-cell	
lymphoma	[147-149].	It	promotes	protein	acetylation;	modulates	
gene	expression;	and	induces	differentiation,	growth	arrest	and	
apoptosis	 of	 tumor	 cells	 [148,149].	 It	 has	 shown	 promising	
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clinical	 activity	 against	 certain	 hematologic	 malignancies	 and	
solid	tumors	such	as:	MDSs,	AML,	CMML,	MM,	cutaneous	T-cell	
lymphoma,	diffuse	large	B-cell	lymphoma,	Hodgkin's	lymphoma,	
in	additions	to	carcinomas	of	the:	breast,	prostate,	colon	and	lung	
[147-154].

In	patients	with	MDSs,	CMML	and	AML,	the	efficacy	of	vorinostat	
as	 a	 single	 agent	 is	 limited	 but	 several	 phase	 I	 and	 II	 clinical	
trials	 using	 combinations	 of	 vorinostat	 with	 conventional	
chemotherapeutic	 agents	 such	 as	 idarubicin	 and	 cytarabine	 or	
investigational	drugs	such	as	HMAs	or	lenalidomide	have	shown	
more	promising	results	[147,148,150,154].	However,	in	patients	
with	MDSs	and	AML,	the	use	of	vorinostat	 in	combination	with	
bortezomib	 or	 alvocidib	 has	 not	 shown	 any	 objective	 clinical	
responses	[151,153].

As	 a	 single	 agent	 or	 in	 various	 drug	 combinations,	 vorinostat	
has	 acceptable	 toxicity	 profile	with	mainly	 gastrointestinal	 and	
constitutional	 side	 effects	 [148,154].	 The	main	 adverse	 effects	
of	 the	 drug	 include:	 nausea,	 vomiting,	 diarrhea,	 dehydration,	
anorexia,	 fatigue,	 cytopenias	 including	 thrombocytopenia,	
prolongation	 of	 QT	 interval	 on	 electrocardiogram,	 abnormal	
liver	profile	and	metabolic	disturbances	 including	hypokalemia,	
hyperglycemia	and	hypophosphatemia	[147,148,150-154].

Panobinostat: Panibinostat	 is	 a	 potent	 oral	 pan-deacetylase	
inhibitor	 of	 HDAC	 enzymes	 implicated	 in	 cancer	 development	
and	 progression	 that	 has	 been	 approved	 for	 the	 treatment	
of	MM	 in	 the	 USA,	 Japan	 and	 Europe	 [155,156].	 It	modulates	
the	 acetylation	 of	 histone	 proteins	 and	 protein	 chaperones	
in	 malignant	 cells	 and	 its	 epigenetic	 regulation	 is	 primarily	
modulated	 through	 inhibition	 of	 class	 I	 histone	 deacetylase	
enzymes	leading	to:	increased	histone	acetylation,	relaxation	of	
chromatin	and	alteration	of	expression	of	certain	genes	including	
tumor	suppressor	genes	[155].

Phase	 I	 and	 II	 clinical	 trials	 on	 the	 use	 of	 panobinostat	 in	 low	
or	 intermediate	 risk	 MDSs	 have	 shown	 either	 limited	 or	 no	
meaningful	 clinical	 activity	 [157,158].	 However,	 the	 use	 of	 the	
drug	in	combination	with	azacitidine	in	the	treatment	of	MDSs,	
CMML	 and	 AML	 has	 shown	 variable	 clinical	 activity	 [159-161].	
Additionally,	the	use	of	panobinostat	in	the	maintenance	therapy	
after	 allogeneic	 HSCT	 in	 patients	 with	 HR-MDSs	 and	 AML	 has	
been	shown	to	prolong	OS	and	to	reduce	rate	of	relapse	of	the	
primary	disease	[162].	The	following	adverse	effects	have	been	
reported	with	 the	 use	 of	 panobinostat:	 constitutional	 symptoms,	
GIT	upset,	 BM	 suppression,	 infections,	 neuropathy	 and	metabolic	
disturbances	[155,159-162].

Romidepsin: Romidepsin	 (depsipeptide)	 is	 a	 bicyclic	 peptide	 that	
showed	class	I	selective	HDACI	activity	in	the	year	1998.	Subsequently,	
it	was	 approved	 by	 the	USA-FDA	 for	 the	 treatment	 of	 cutaneous	
T-cell	 lymphoma	 [163,164].	 Promising	 results	 have	 emerged	 from	
early	clinical	trials	supporting	the	use	of	romidepsin	in	conjunction	
with	other	drugs	for	the	treatment	of	other	types	of	lymphoma,	MM	
as	well	as	certain	solid	tumors	[163].	As	monotherapy	in	unselected	
patients	with	MDSs	and	AML,	romidepsin	has	shown	limited	clinical	
activity	[164].	However,	its	use	in	patients	with	core	binding	factor	
AML	 has	 shown	 differential	 anti-leukemic	 and	 molecular	 activity	
[165].	 The	 adverse	 effects	 of	 romidepsin	 include:	 GIT	 toxicity,	

myelosuppression	 with	 subsequent	 bleeding	 and	 infectious	
complications,	 constitutional	 symptoms,	 and	metabolic	 as	well	 as	
electrolytic	disturbances	[164].

Valproic acid (phenylbutyrate): Valproic	 acid	 (VPA),	 which	 has	
been	 known	 as	 an	 epileptic	 agent	 for	 many	 years,	 is	 a	 short-
chain	 fatty	acid	 and	a	HDACI	 that	 can	 reduce	proliferation	and	
induce	differentiation	of	myeloid	blast	cells	in	patients	with	MDSs	
and	AML	particularly	when	 given	 in	 combination	with	 all-trans	
retinoic	acid	(ATRA)	[166-169].	In	patients	with	MDSs	and	AML,	
VPA	 as	 a	 single	 agent	 has	 shown	 limited	 clinical	 activity,	 but	
once	used	in	combination	with	other	drugs;	such	as:	azacitidine,	
ATRA,	 bortezomib,	 hydralazine,	 decitabine	 or	 cytotoxic	
chemotherapeutic	 agents;	 it	 has	 been	 reported	 to	 be	 clinically	
active	due	to	synergistic	anti-leukemic	activity	and	positive	effects	
on	blood	 indices	with	a	significant	 increase	 in	platelet	count	 in	
particular	[131,166-175].	Although	VPA	is	generally	well	tolerated	
with	modest	side	effects,	moderate	to	severe	hematologic	toxicity	
including	myelosuppression	and	evolution	of	myelodysplasia	has	
been	 reported	 with	 the	 prolonged	 use	 of	 the	 drug	 [166,176-
182].	 The	 adverse	 effects	 are	more	pronounced	once	 the	drug	
is	 given	 in	 combination	 with	 other	 agents	 and	 these	 include	
various	 degrees	 of	 myelosuppression,	 evolution	 of	 MDSs	 and	
neurotoxicity	[131,168,169].

Other HDACIs: Unfortunately,	clinical	trials	combining	entinostat	
or	pracinostat	with	azacitidine	in	the	treatment	of	patients	with	
MDSs	and	AML	have	not	shown	any	additional	beneficial	effects	
[183,184].	LBH589	is	a	novel	HDACI	that	inhibits	proliferation	and	
induces	apoptosis	 in	 tumor	cell	 lines	 [185].	A	phase	 I	 study	on	
the	IV	use	of	LBH589	in	a	limited	number	of	patients	with	HMs	
including	AML	and	MDSs	has	shown	consistent	but	transient	anti-
leukemic	and	biological	effects	 [185].	A	phase	 II	clinical	 trial	on	
the	use	of	belinostat	in	the	treatment	of	21	patients	with	MDSs	
showed	only	5%	ORR	with	significant	grade	3-4	toxicities	so	the	
study	was	ultimately	terminated	[186].

Challenges in the Current Management 
of MDSs
Thrombocytopenia and its future therapies in 
MDSs
Thrombocytopenia,	which	is	commonly	encountered	in	patients	
with	 MDSs,	 has	 multifactorial	 etiology	 and	 its	 associated	
bleeding	complications	represent	a	major	cause	of	morbidity	and	
mortality	[187-190].	The	thrombopoietin	agonists,	eltrombopag	
and	romiplostim,	have	shown	clinical	activity	in	trials	performed	
in	 patients	 with	 MDSs	 and	 thus	 they	 represent	 a	 potential	
alternative	therapeutic	option	to	platelet	transfusions	[187,191].	
Several	phase	 I	and	phase	 II	 clinical	 trials	have	shown	not	only	
safety	 but	 also	 efficacy	 of	 eltrombopag	 in	 the	 treatment	 of	
thrombocytopenia	 in	 patients	 with	 advanced	 MDSs	 [190,192-
194].	Eltrombopag	has	been	shown	to	 increase	megakaryocytic	
differentiation	 thus	 leading	 to	 the	 formation	 of	 normal	
megakaryocytic	clones	[195].	A	single	phase	II	clinical	trial	on	the	
use	 of	 romiplostim	 in	 patients	 with	 low	 and	 intermediate-risk	
MDSs	 receiving	 azacitidine	 therapy	 has	 shown	 clinical	 benefit	
[189].	More	 prospective	 and	 ramdomized	 clinical	 trials	 on	 the	
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use	of	thrombopoietin	agonists	in	different	subtypes	of	MDSs	are	
needed	to:	determine	their	future	role	as	adjunctive	therapies	in	
patients	with	MDSs	 receiving	novel	agents	 including	epigenetic	
therapies	and	prove	or	disprove	 the	concern	 that	 these	agents	
may	increase	the	risks	of	clonal	evolution	and	transformation	into	
AML	[196,197].

Personalized medicine in MDSs and its 
challenges
The	 main	 problems	 encountered	 in	 the	 treatment	 of	 patients	
with	MDSs	are:

• Unremarkable	effects	of	conventional	therapies,
• Only	 a	 minority	 of	 patients	 with	 MDSs	 are	 eligible	 for	

allogeneic	 HSCT	 which	 is	 still	 the	 only	 proven	 curative	
therapeutic	modality,	and

• Despite	the	superiority	of	HMAs	when	compared	to	HDACIs,	
treatment	with	both	HMAs	and	HDACIs	has	shown	limited	
efficacy	[198].

Additional	challenges	include:
• despite	 the	molecular	 advances	 in	MDSs,	 response	 rates	

and	their	durations	are	suboptimal	as	CR	rates	are	less	than	
20%	and	they	rarely	exceed	2	years;

• over	the	last	12	years,	only	3	drugs	(azacitidine,	decitabine	
and	 lenalidomide)	have	been	approved	 for	 the	 treatment	
of	MDSs;	and

• the	progress	in	the	therapeutics	of	MDSs	is	lagging	behind	
those	of	MM,	lymphomas	and	acute	lymphoblastic	leukemia	
[199-201].	 The	 current	 clinical	 picture	 of	 personalized	

medicine	in	MDSs	is	illustrated	in	Table 7 [39,45,200-206].	
Examples	of	the	 investigational	drugs;	mainly	 in	phase	 I/II	
clinical	 trials;	and	the	potential	 future	therapies	 for	MDSs	
are	included	in	Table 8 [187,190,196,206-223].

Conclusions and Future Directions
MDSs	 comprise	 a	 group	 of	 clonal	 disorders	 that	 are	 clinically	
and	 biologically	 heterogeneous.	 Dysplastic	 hematopoiesis	
and	 epigenetic	 dysregulation	 are	major	 players	 in	 the	 complex	
pathogenesis	 of	 MDSs.	 Despite	 the	 progress	 achieved	 in	 the	
molecular	biology	and	epigenetics	of	MDSs,	the	response	rates	to	
the	currently	available	epigenetic	therapies	are	still	suboptimal.	
Additionally,	no	new	novel	therapies	have	been	approved	for	the	
treatment	of	MDSs	over	the	last	12	years.

As	 single	 agents,	 the	 HMAs	 azacitidine	 and	 decitabine	 have	
already	 shown	 remarkable	 clinical	 activity,	 but	 complete	
responses	are	encountered	 in	about	20%	of	patients	and	these	
responses	hardly	 last	 longer	than	2	years.	However,	once	these	
epigenetic	 therapies	 are	 used	 in	 combination	 with	 cytotoxic	
chemotherapeutic	 agents	 or	 other	 novel	 therapies,	 response	
rates	can	improve	further.

Despite	having	several	classes	of	HDACIs	with	various	mechanisms	
of	action,	 these	agents	have	shown	only	modest	activity	 in	 the	
treatment	of	patients	with	MDSs,	possibly	due	to	the	frequently	
evolving	drug	resistance.	Hopefully,	the	ongoing	clinical	trials	on	
several	novel	agents	targeting	various	pathological	pathways	may	
ultimately	translate	into	real	progress	in	the	clinical	arena	so	that	
patients	with	 various	 types	of	MDSs	 can	enjoy	 cure	or	 at	 least	
more	durable	responses.
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