iMedPub Journals http://www.imedpub.com

DOI: 10.21767/2393-8854.100019

Global Journal of Research and Review ISSN 2393-8854 **2017**

Vol. 4 No. 2: 19

Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing

Received: June 05, 2017; Accepted: June 06, 2017; Published: June 16, 2017

Because of environmental concerns, the Wreath-shaped Mn_{ga}, $Mn_4O_3Cl_4(O_2CCH_2CH_3)_3(pyridine)_3$, $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$ $Mn_{A}Re_{A}$ and $Mn-ON-Ni-NO-Mn-O_{2}$ repeat unit Nano clusters content in Nano compounds has come under security; therefore, it is necessary to explore possibilities to reduce these Wreathshaped Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, $Mn_4O_3Cl_4(O_5CCH_5CH_3)_{16}(H_2O)_$)₃(pyridine)₃, Mn₄Re₄ and Mn–ON–Ni–NO–Mn–O₂ repeat unit Nano clusters content [1-27]. In this opinion, the application of several Wreath-shaped Mn₈₄, Mn₁₂O₁₂(O₂CC₆H₅)₁₆(H₂O)₄, Mn₄O₃ Cl₄(O₂CCH₂CH₃)₃(pyridine)₃, Mn₄Re₄ and Mn–ON–Ni–NO–Mn–O₂ repeat unit Nano clusters as electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for indication of the dimer or other provide different influences on the magnetic behavior of Single Molecular Magnets (SMMs) as qubits for quantum computing are discussed, in order to find alternatives for the conventionally used Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, Mn 403Cl4(02CCH2CH3)3(pyridine)3, Mn4Re4 and Mn-ON-Ni-NO-Mn-O₂ repeat unit Nano clusters and fatty acid activator system. The effects of different Mn_{a4} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, Mn_4O_3C I₄(O₂CCH₂CH₂)₂(pyridine)₂, Mn₄Re₄ and Mn–ON–Ni– NO–Mn–O₂ repeat unit Nano clusters on the cure and physico-mechanical properties of two widely different Nano compounds are studied. Mn₈₄, Mn₁₂O₁₂(O₂CC₆H₅)₁₆(H₂O)₄, Mn₄O₃Cl₄(O₂CCH₂CH₃)₂(pyridine)₂, Mn₄Re₄ and Mn–ON–Ni–NO–Mn–O₂ repeat unit Nano clusters of Triethanolamine (TEA), Thiodiglycol (2,2'-bishydroxyethylsulfide, TDG) and 2,2'- Dithiobis(benzothiazole) (MBTS) were synthesized and characterized by ordinary spectroscopies methods such as ¹HNMR, ¹³CNMR, ³¹PNMR, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), FT-Raman, UV-Vis and HR Mass spectroscopies, etc. After characterization of target Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, Mn_4O ₃Cl₄(O₂CCH₂CH₃)₃(pyridine)₃, Mn₄Re₄ and Mn–ON–Ni–NO–Mn–O₂ repeat unit Nano clusters, the application of them were studied

Alireza Heidari

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

Corresponding author: Alireza Heidari

Scholar.Researcher.Scientist@gmail. com

Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA.

Tel: +1-775-410-4974

Citation: Heidari A. Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing. Glob J Res Rev. 2017, 4:2.

in Nano compounds based on electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for indication of the dimer or other provide different influences on the magnetic behavior of Single Molecular Magnets (SMMs) as qubits for quantum computing. The physico-mechanical properties of obtained Nano compounds were investigation by ordinary experimental tools.

 Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, $Mn_4O_3CI_4(O_2CCH_2CH_3)_3$ (pyrid ine)₃, Mn_4Re_4 and $Mn-ON-Ni-NO-Mn-O_2$ repeat unit Nano clusters in ubiquitous in nature where it several important roles. Recently, it has been identified as HIV-1 non-nucleoside reverse transcriptase inhibitor, which led to the idea of developing novel synthetic Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, $Mn_4O_3CI_4(O_2CCH_2CH_3)_3$ (pyridine)₃, Mn_4Re_4 and $Mn-ON-Ni-NO-Mn-O_2$ repeat unit Nano clusters. Several synthetic methodologies have appeared in which Mn_{84} , $Mn_{12}O_{12}(O_2CC_6H_5)_{16}(H_2O)_4$, $Mn_4O_3CI_4(O_2CCH_2CH_3)_3$ (pyridine)₃, Mn_4Re_4 and $Mn-ON-Ni-NO-Mn-O_2$ repeat unit Nano clusters is involved as an activating group and its use as intermediates in total synthesis of many natural products has become a classic.

 $Mn-O_2$ repeat unit Nano clusters, we have carried out the reaction of organocobaloximes with aryldisolfonyl chlorides $ClO_2S-Ar-Ar-SO_2Cl$ having two reactive of SO_2-Cl bonds, under photochemical and anaerobic conditions at 0°C to give a variety of anti-cancer Nano drugs including the disulfones, dimer and O-Organocobaloxime (dmgH–ethers) in variable yields.

References

- 1 Wark PA, Peto J (2017) Cancer Epidemiology. (2ndEdn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 339-346.
- 2 Miller AB (2017) Cancer Prevention. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 381-388.
- 3 Seventer JMV, Hochberg NS (2017) Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 22-39.
- 4 Petridou ET, Antonopoulos CN (2017) Injury Epidemiology. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 258-274.
- 5 Trostle JA (2017) Cultural Epidemiology. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford pp: 191-197.
- 6 Irgens LM (2017) Epidemiology: Historical. (2ndEdn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 530-546.
- 7 Myer L, Susser E, Link BG, Morroni C (2017) Social Epidemiology. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 574-585.
- 8 Enstrom JE (2017) Epidemiology of Vitamin C. (2ndEdn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 559-568.
- 9 Kelsey JL, Gold EB (2017) Observational Epidemiology. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 295-307.
- 10 Kono S, (2017) Gastric Cancer. (2ndEdn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 215-222.
- 11 Landry JS, Menzies D (2017) Tuberculosis Prevention. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 246-251.
- 12 Outwater AH, Leshabari SC, Nolte E (2017) Disease Prevention: An Overview. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 338-349.
- 13 Cheng VC, Chan JF, Fan-Ngai HI, Kwok-Yung Y (2017) Viral Infections, an Overview with a Focus on Prevention of Transmission. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 368-377.
- 14 Wilhelmsen L (2017) Cardiovascular Disease Prevention. (2nd edn.),

International Encyclopedia of Public Health, Academic Press, Oxford, pp: 438-447.

- 15 Campbell H, Anderson N (2017) Genetic Epidemiology. (2nd edn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 248-252.
- 16 Rutherford A (2017) Violence/Intentional Injuries Epidemiology and Overview. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 344-350.
- 17 Miettinen OS (2017) Demography, Epidemiology, and Public Health. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 223-225.
- 18 Kravchenko JS (2017) Diet and Cancer. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 294-304.
- 19 O'Callaghan DS, O'Connell F (2017) Lung Cancer. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 477-484.
- 20 Sikora K (2017) Future Organization of Cancer Care. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 204-214.
- 21 Woodhouse LC, Edmondson RJ (2017) Ovarian Cancer. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 378-382.
- 22 Mitry E (2017) Colorectal Cancer. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 75-81.
- 23 Pelucchi C, Negri E (2017) Bladder Cancer. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 233-238.
- 24 Stiller CA (2017) Pediatric Cancers. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 426-437.
- 25 Leo DD, Krysinska K (2017) Suicide and Self-directed Violence. (2nd Edn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 115-123.
- 26 Thacker SB, Sencer DJ, Jaffe HW (2017) Centers for Disease Control. (2nd Edn), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 448-454.
- 27 Wang Y and Wang L (2017) Child Obesity and Health. (2nd edn.), International Encyclopedia of Public Health, Academic Press, Oxford, pp: 487-501.