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Footrot is a highly contagious disease of the feet of animals,
characterized by the separation of keratinous hoof from the
underlying tissue. Co-infection of Dichelobacter nodosus
and Fusobacterium necrophorum is the main reason of
footrot in clinical. Environmental factors, such as warm and
wet weather and pasture quality, etc. all are conducive for

indirect transmission of bacteria among individuals.
Fusobacterium necrophorum, which product several
virulence factors such as leukotoxin, hemolysin,

hemagglutinin, play an essential role in the infection
process. Moreover, a lot of potential differential expression
(PDE) proteins were found in plasma samples from dairy
cattle with footrotsome of which may be valuable for use as
diagnostic biomarkers, the possible mechanism which these
proteins involved in the pathogenesis of footrot were
analyzed in this paper.
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Introduction

Footrot is one of the major causes of lameness in cattle,
sheep and goats. It is a highly contagious and debilitating
disease of the feet of animals, characterized by the separation of
keratinous hoof from the underlying tissue [1,2]. The primary
pathogen was first identified as Dichelobacter nodosus in 1941
[3]. Footrot not only infect among one kind of ruminant, but also
between different ruminants, one study indicates that cross-
infection of virulent Dichelobacter nodosus between sheep and
co-grazing cattle have occurred [4]. In general, Dichelobacter
nodosusis considered the primary pathogen causing footrot
since elimination of virulent strains of Dichelobacter nodosus
appears to prevent footrot [1]. However, Dichelobacter nodosus

is unable to replicate the symptoms of this disease on its own, as
a second pathogen Fusobacterium necrophorum is reported to
be important and indispensable to induce footrot symptoms in
sheep [5]. Fusobacterium necrophorum was detected in 79 of
total 148 bovine hoof scrapings from September 2005 to May
2006 in dairy herds of New Zealand by polymerase chain
reaction [6]. Huitong et al. found four [ktA genes of
Fusobacterium necrophorum strains in hooves of footrot
infected cattle [7]. Fusobacterium necrophorum was detected
from footrot in ovine [8], sheep [9], and associated with hoof
diseases in pigs [10] and hoof thrush in horses [11]. Beside
footrot in animal, Fusobacterium necrophorum is involved in
many diseases in human. It is the causative agent of the invasive
disease Lemierre's syndrome [12,13] anaerobic endocarditis
[14,15] tonsillitis [5] empyema necessitates [16]. It is also
associated with peritonsillar abscess formation and otitis media
in children [17,18] Fusobacterium necrophorum was found in
majority of patients with acute tonsillitis or peritonsillar abscess
by one 10 years epidemiology study in an academic hospital
[19].

Aetiology and Pathogenesis of Footrot

Generally, advanced footrot usually involve the sole and hoof
wall, but new infections often commence in the interdigital skin.
The interdigital skin is normally resistant to bacterial infection
and is susceptible if it is pre-disposed by prolonged exposure to
wet and warm conditions [20]. So, the prerequisite for the
initiation of footrot is the damage of interdigital skin epithelium
[3]. Bacterial replication in this damaged skin leads to
Interdigital Dermatitis at first, which the superficial epidermal
layers are inflamed and slough off irregularly. The interdigital
skin of infected feet was usually swollen, smelly [21]. Following
the development of the interdigital lesion, the infection may
extend into the sensitive laminae underlying the sole [22] which
then progressively result in the separation of keratinous hoof
capsule from the underlying tissue. Ultimately, interdigital skin
of infected feet was then covered with necrotic material [21].
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Moreover, a typical lesion of bovine digital dermatitis is found on
the plantar surface of foot which presents as a circumscribed
moist ulcerative erosive mass along the coronary band or
interdigital space [23]. Though footrot is not non-infectious,
environmental factors, such as warm moist conditions, high
temperatures and pasture play an essential role in the initiation
and development of the disease [24]. Histologically, Interdigital
Dermatitis and footrot presenting progressive chronicactive
pododermatitis, gradually from a mild form in clinically normal
feet to a focally severe form with frequent areas of purulence in
footrot [25]. There is a loss of stratum corneum and granulosum,
invasion of stratum spinosum by reactive inflammation
(infiltration of neutrophils, plasma cells, lymphocytes, and
eosinophils in dermis) [26]. Over time, lesions can become
larger, prone to ulceration or physical trauma [27].

The pathogenesis of footrot is very complex and
multifactorial. In most cases, co-infection of Dichelobacter
nodosus and and Fusobacterium necrophorum have the most
important roles in footrot [28] and Dichelobacter nodosus plays
the primary role in disease progression, with Fusobacterium
necrophorum playing a secondary role [29]. The viewpoint that
footrot is dependent on a mixed bacterial infection is supported
by the pharyngotonsillitis in human [17]. Hoof horn separation
does not occur without the involvement of Dichelobacter
nodosus [25]. Early histopathological observations of tissue
sections from footrot lesions described little inflammatory
response in areas with Dichelobacter nodosus, but severe
inflammation in response to invasion by Fusobacterium
necrophorum [30]. Even though, some studies have indicated
that Dichelobacter nodosus appears to be the primary invader of
the epidermal matrix and to initiate the process of hoof
separation, providing a necessary environment where
Fusobacterium necrophorum can flourish [30,31]. The infection
appears to be the result of the synergistic action of two kinds of
particular bacterial species, of which Dichelobacter nodosus is
the causative transmitting agent and Fusobacterium
necrophorum appears to be necessary for the induction and
development of the disease [31]. This was confirmed by the
results that lesion was infiltration by polymorphonuclear
leucocytes and a dense population of filamentous bacteria,
visually identified as Fusobacterium necrophorum in Interdigital
Dermatitis sections [32]. Most studies indicate that both
Fusobacterium necrophorum and Dichelobacter nodosus are
essential for the invasion of the epidermal matrix of the hoof
and neither bacterial species alone will cause a footrot lesion
[22]. Firstly, Fusobacterium necrophorum colonises the stratum
corneum, and then facilitating infection with Dichelobacter
nodosus. The established Dichelobacter nodosus infection allows
Fusobacterium necrophorum to penetrate more deeply into the
tissue, causing further inflammation and destruction of
epidermal tissue [22]. Fusobacterium necrophorum establish
infection, resulting in the development of Interdigital Dermatitis.
While this condition is itself relatively mild, it provides the
necessary pre-disposing conditions for infection with
Dichelobacter nodosus [31,32]. Additionally, there is evidence
that Dichelobacter nodosus is not a major agent of lameness in
New Zealand dairy cattle, while Fusobacterium necrophorum
possibly could be [6]. Anyhow it seems that Fusobacterium
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necrophorum either facilitates disease development by
increasing the damage to the interdigital skin and promoting
Interdigital Dermatitis that subsequently permits replication of
Dichelobacter nodosus [6,31] or follows Dichelobacter nodosus
or exacerbate the severity and persistence of footrot [33,34]. In
quite large extent, we consider that Fusobacterium
necrophorum plays an opportunistic or secondary role, because
it is consistent with understanding of the role of Fusobacterium
spp. in other diseases. Fusobacterium necrophorum is present in
lesions and abscesses in many polymicrobial infections, where
they are considered to enhance disease severity through
synergistic relationships with other pathogens [35,36].

Fusobacterium necrophorum, a gram-negative, non-spore-
forming, obligate anaerobe, is part of the normal flora of the
oral cavity, genital tract, and alimentary tract [36] and is a
normal inhabitant of the gastrointestinal, respiratory, and
genitourinary tract of cattle [37,38]. Fusobacterium
necrophorum is present as a primary or secondary opportunistic
pathogen in numerous necrotic diseases conditions generally
termed ‘necrobacillosis’ in humans, domestic and wild animals
[36,38]. In cattle, Fusobacterium necrophorum induces
abdominal abscesses, often in hepatic tissue, [36,39] it has been
reported that this bacterium causes calf diphtheria, foot rot etc.
[31,40,41] and necrotic laryngitis in beef and dairy cattle which
are of significant economic importance to the cattle industry
[38]. In humans, Fusobacterium necrophorum is associated with
Lemierre’s syndrome, a condition that primarily affects young
and healthy persons [42,43]. Furthermore, it causes
pharyngotonsillitis, pharyngitis, parotitis, dental abscesses, and
middle ear infections, including mastoiditis [44-46].

In cattle, Fusobacterium necrophorum is classified into two
subspecies, ss. necrophorum and ss. fundiliforme, also called
biotype A  (Fusobacterium  necrophorum  subspecies
necrophorum) and biotype B (Fusobacterium necrophorum
subspecies funduliforme) respectively [36,47]. These two
subspecies can be distinguished by their growth, morphological,
biochemical and molecular characteristics [38,48,49].
Subspecies necrophorum is more frequently encountered in
infections than subsp. Funduliforme, and the latter tends to
occur more frequently in mixed infections [37,50,51]. Subspecies
necrophorum is the predominant and primary etiological agent
of bovine liver abscesses [37,52]. While subsp. funduliforme is
less frequently isolated from liver abscesses [51] despite their
reported predominance in the rumen contents [53]. Subspecies
funduliforme is the predominant biotype isolated from ruminal
lesions [37,38]. The Fusobacterium necrophorum subsp.
necrophorum is more virulent than Fusobacterium necrophorum
subsp. funduliforme because of more potent or increased
production of virulence factors [38].

Main Virulence factors Producted by
Fusobacterium Necrophorum

Recent studies have revealed that subsp. necrophorum can
produce several virulence factors such as leukotoxin; endotoxic
lipopolysaccharide (LPS), hemolysin, hemagglutinin, capsule,
adhesins or pili, platelet aggregation factor, dermonecrotic toxin,
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and several extracellular enzymes, including proteases and
deoxyribonucleases and one new molecular collagenolytic cell
wall component (CCWC), with collagenase activity, which was
separated in past [54-56]. All these factors contribute to entry,
colonization, proliferation, establishment of the organism and to
the development of lesions on the ruminal wall (ruminal
abscesses or rumenitis) and abscesses in the liver [52,57].
However, leukotoxin which is encodes by genome of
Fusobacterium necrophorum, is considered to be the major
virulence factor involved in the pathogenesis of fusobacterial
infections [58] as indicated by a correlation between toxin
production and ability to induce abscesses in laboratory animals,
[59,60] and feedlot cattle [36,58].

Animal experiments have illustrated the ability of a
leukotoxin-producing strain of Fusobacterium necrophorum to
induce morbidity and mortality, and the inability of non-
leukotoxin producers or low toxin producers to cause infections
[59]. Huitong Zhou isolated a new variant of the leukotoxin gene
of Fusobacterium necrophorum from the hoof of a sheep with
ovine footrot [61]. The strains of Fusobacterium necrophorum
without the ability of leukotoxin-producing cannot induce foot
abscesses in cattle following intradermal inoculation [59,60].
Furthermoreseveral investigators have reported that type A
produces more leukotoxin and is isolated more frequently from
liver abscesses. Type B produces less leukotoxin, so subsp.
funduliforme was less pathogenic [59,60,62].

The Fusobacterium necrophorum leukotoxin is a large
secreted extracellular protein of high molecular weight that is
cytotoxic to neutrophils, macrophages, and hepatocytes [59,63].
The complete nucleotide sequence of the tricistronic (lkt BAC)
leukotoxin operon of Fusobacterium necrophorum has been
determined [40,64] and the /ktA (leukotoxin) gene is 9726 bp
long and encodes a protein of 3241 amino acids [40]. The
sequence diversity of the promoter region of the leukotoxin
operon explains the different levels of leukotoxin production
between the two subspecies [58,63]. Moreover, the /ktA gene
appears to be unique to Fusobacterium necrophorum, as it is
reportedly not present in other Fusobacterium species [64]. In
the past, it was thought that Fusobacterium necrophorum
leukotoxin does not share sequence homology with any other
known bacterial leukotoxin, but a recent study suggests the
presence of a homologue of /ktA in the F. equinum genome [53].
The full-length recombinant leukotoxin has been shown to be
toxic to bovine polymorphonuclear (PMN) leukocytes, and the
toxin is more active against PMNs than against lymphocytes
[65,66]. Fusobacterium necrophorum leukotoxin is cytotoxic to
neutrophils, macrophages, hepatocytes, and possibly to ruminal
epithelial cells [63]. The toxin induces apoptosis at low
concentrations and lyses the cells at higher concentrations [50].
The cytotoxicity appears to be specific to ruminant (cattle and
sheep) and human neutrophils, but not those from pigs or
rabbits and only moderately toxic to neutrophils of horses [63].
The toxin induces apoptosis at low concentrations and lyses the
cells at higher concentrations and is more active against PMNs
than against lymphocytes [65]. The ability of leukotoxin to
modulate the host immune system by its toxicity, including
cellular activation of PMNs and apoptosis-mediated killing of
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phagocytes and immune effector cells, represents a potentially
important mechanism of its pathogenesis [65].

Hemagglutinin is a heat-labile, low molecular weight protein
(19 kDa) rich in amino acids alanine, glutamine and histidine. It
is not known whether hemagglutinin is an outer membrane
protein or a secreted protein that agglutinates erythrocytes.
Kanoe et al. demonstrated that hemagglutinin was present on
the cell surface and suggested that they may be bacterial
appendages [67]. Animal isolates of subsp. necrophorum with
hemagglutinin were more virulent than animal and human
isolates of subsp. funduliforme lacking hemagglutinin [68]. It has
long been recognized that Fusobacterium necrophorum,
particularly subsp. necrophorum, agglutinates erythrocytes from
chicken and other animal species [50] Shinjo et al. reported that
both subspecies of Fusobacterium necrophorum varied in their
ability to agglutinate erythrocytes from different animal species
[69]. Shinjo and Kiyoyama [69] reported that a hemagglutinin-
lacking mutant strain of Fusobacterium necrophorum was not as
lethal to mice as the wild type strain. Enhanced virulence of
subsp. necrophorum, compared to subsp. funduliforme, may in
part result from better adherence to the ruminal epithelium
[68]. Bacterial adherence was inhibited by pre-treatment with
either anti-hemagglutinin serum or trypsin and pepsin [70].
Pretreatment with lipase and neuraminidase had no effect on
bacterial adherence to the ruminal epithelium [70]. Therefore,
hemagglutinin may play a significant role in adherence to and
invasion of ruminal epithelial cells by Fusobacterium
necrophorum, an initial step in the pathogenesis of liver
abscesses in cattle [62].

As with any other Gram-negative bacterias, the outer
membrane of Fusobacterium necrophorum contains endotoxic
LPS and the effect of LPS on the genesis of hepatic abscesses in
laboratory animals has been studied by several investigators
[71]. The chemical composition of Fusobacterium necrophorum
LPS varies depending on the subspecies [72]. Nakajima Y
demonstrated that injection of a mixture of Fusobacterium
necrophorum and its LPS induced hepatic necrosis and abscess
formation in mice [73]. Garcia et al. reported that the
differences in virulence associated with endotoxin from different
Fusobacterium necrophorum subspecies were due to the
changes in leukocyte trafficking and endotoxin content in mice
[74]. The purified Fusobacterium necrophorum LPS was able to
activate peritoneal macrophages in synthesizing the pro-
inflammatory cytokine, interleukin-1 [75]. But the role of LPS in
the development of footrot needs to be evaluated further.
Besides LPS, very recently, two studies identified several outer
membrane proteins, which play an important role in adhesion to
the bovine endothelial cells surface, which is a critical initial step
in the pathogenesis [76,77].

The Correlation between Plasma Proteins
from Dairy Cattle with Footrot and
Virulence Factors

In one recent study, which based on proteomic analysis of
plasma proteins from dairy cattle with footrot plasma [16],
potential differential expression (PDE) proteins were found in
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plasma samples from dairy cattle with footrot (Table 1)seven of
which may be valuable for use as diagnostic biomarkers,
including Haptoglobin, SERPINA 10 protein, afamin precursor,
haptoglobin precursor, predicted peptidoglycan recognition
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protein L (PGRP-L), apolipoprotein D, keratan sulfate
proteoglycan (KS-PG) [78] 3 of 16 PDE proteins, haptoglobin,
haptoglobin precursor, and afamin precursor are response of
innate immunity [79-81].

Table 1: Possible effect of seven potential differential expression proteins on pathogenesis of footrot.

Categorization of protein Protein

Possible effect in pathogenesis of footrot.

innate immune recognition molecules predicted peptidoglycan

L(PGRP-L)

recognition protein

Recognition of the innate immune activators of the Gram-negative
anaerobic bacterium F. necrophorum

acute phase proteins haptoglobin

Response of innate immunity.
Inhibits its oxidative activity.
Prevent iron-utilizing bacteria from.

Benefiting from hemolysis.
Acute-phase protein.

haptoglobin precursor

It may same with above.

afamin precursor

Response of innate immunity.
Affect metabolic syndrome.
Involve in inflammation.

Acute-phase protein.

regulatory proteins SERPINA 10

Involve in blood coagulation.
Involve in complement activation.
Involve in fibrinolysis.

Involve in angiogenesis.

Involve in inflammation.

apolipoprotein-D

Relate to metabolism and lipid transport.
Inhibite oxidative stress.

Inhibite apoptosis.

cell adhesion and
proteins

cytoskeletal keratan sulfate proteoglycan

Correlation with the vesicles.
Marker of cartilage catabolism

Caused by suppuration, necrosis, and corruption

Haptoglobin (abbreviated as Hp) is the protein that is encoded
by the HP gene. Inblood plasma, haptoglobin binds
free hemoglobin (Hb) released from erythrocytes with
high affinity and thereby inhibits its oxidative activity. In the
process of binding hemoglobin, haptoglobin can prevent iron-
utilizing bacteria from benefiting from hemolysis. So haptoglobin
is considered as one of acute-phase protein [82]. In clinical,
Haptoglobin was a biomarker for mastitis [83], Interdigital
Dermatitis [84], arthritis [85] and hoof disease [86] was verified
as plasma biomarkers of footrot in dairy cattle [78]. In the
footrot plasma, iron ion binding proteins which lead to the
increase of the iron ion concentration in the footrot plasma [78].
The changes of the iron ion concentration may correlate with
erythrocyte hemolysis caused by Fusobacterium
necrophorum infection [87,88]. Accordingly, the emergency of
haptoglobin in plasma can be considered as a response of innate
immunity to hemolysis.

SERPINA 10 protein, namely Protein Z-dependent protease
inhibitor, is involved in blood coagulation, complement
activation, fibrinolysis, angiogenesis, inflammation, and tumor
suppression [79] and the deficiency will lead to thrombosis [89].
The emergence of SERPINA 10 protein in plasma from footrot-
affected cattle may indicate the defense response of the host

against footrot caused by Fusobacterium
necrophorum infection. The effects of SERPINA 10 including
complement activation, fibrinolysis, angiogenesis, and
inflammation may all implicate in footrot. Therefore, SERPINA 10
is likely to be the main reason that Fusobacterium necrophorum
enhance platelet aggregation, leading to intravascular thrombus
formation [17].

Afamin (AFM) is the member of the albumin gene family, was
discovered in 1994, which is known to be present in plasma,
cerebrospinal etc [90]. Afamin comprises four genes which
encode structurally related serum transport proteins. In clinical,
it was found that afamin was associated with metabolic
syndrome and cancer in ovarian [91], bladder [92]. Blood
concentrations of afamin have been found to be associated with
a variety of disease phenotypes including metabolic syndrome
and related pathologies such as obesity, pregnancy
complications, type-2 diabetes and dyslipidemia [93], which
suggest that metabolic disorder may occurred during footrot. In
addition, afamin showed a rather strong inverse association with
the inflammatory biomarkers C-reactive protein and
interleukin-6 [94], these result was opposed to the effects of
other factors in infection. Future research regarding the effects
of afamin on footrot need be done.
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Peptidoglycan recognition receptor proteins (PGRPs) are a
family of pattern recognition receptors (PRRs) [95]. Based on
molecular weight, PGRPs are classified into three types, i.e.,
short, intermediate, and long PGRPs (PGRP-S, PGRP-I, and PGRP-
L, respectively) [96] PRRs are considered as one of the important
innate immune molecules, can recognize peptidoglycan (PGN) of
the bacteria cell wall and play an important role in host immune
defense against pathogen infection [97]. So the up-regulation in
footrot cattle plasma of PGRP-L may reflect its effect on Gram-
negative anaerobic bacterium Fusobacterium necrophorum by
binds to its compounds, such as LPS of gram-negative bacteria
[98].

Apolipoprotein D is a secreted glycoprotein, member of the
lipocalin superfamily, with a related beneficial role in
metabolism and lipid transport [99]. Unlike other lipoproteins, it
is mainly produced in the liver, apolipoprotein D is mainly
produced in the brain and testes [100]. In clinical, Apo D
expression is up regulated in several human neuropathologies
[101] situations where Apo D overexpression seems to be
directly related with increases in oxidative stress and apoptosis
[102]. It seems that several authors have suggested that Apo D
has an important function expression of Apolipoprotein D in
footrot cattle may act as one neuroprotective protein and an
antioxidant defense system as previous experiments [103,104].
In spite of the correlation between oxidative stress and
increased gene expression, the mechanisms that Apo D exerts
protective function need to be fully elucidated.

Keratan sulfate (KS) is a glycosaminoglycan (GAG) type
consisted of a sulfated poly-N-acetyl lactosamine chain that have
been found especially in the cartilage, and bone [105,106]. The
PDE protein keratan sulfate proteoglycan (KS-PG) identified in
the plasma from footrot-affected dairy cattle may reflect
catabolism of hoof cartilage and the damage of joint space.
Additionally, Keratan sulfate has important effects in leukocyte
recruitment and activation [107,108] therefore, the up-
regulation expression of it may to some extent consistent with
suppuration, necrosis, and corruption of the hoof tissue.

Four of sixteen PDE proteins in footrot plasma, including
keratan sulfate proteoglycan, centromere protein F, desmoplakin
and similar to superficial zone protein, involving cell adhesion
and cytoskeletal proteins, exhibit a certain correlation with the
vesicles in cellular components GO categories [78]. Centromere
protein F (CENPF) is an essential nuclear protein associated with
the centromere-kinetochore complex and plays a critical role in
chromosome segregation during mitosis. Up-regulated CENPF
expression was positively correlated with venous invasion in
tumor [109]. Desmoplakin is a critical component of desmosome
structures in cardiac muscle and epidermal cells, which function
to maintain the structural integrity at adjacent cell contacts by
interacting with keratins and vimentin [110]. The vesicles are a
basic tool used by the cell for organizing cellular substances, and
perform a variety of functions, including metabolism, transport,
buoyancy control, enzyme storage, and acting as chemical
reaction chambers [111]. Emergence of the vesicle-related
proteins could represent a special change of the cellular
components during the development phase of footrot [78].

© Under License of Creative Commons Attribution 3.0 License

2017

Vol.5 No.1:299

Conclusion

The pathogenesis of footrot is very complex and
multifactorial. In most cases, footrot is dependent on a mixed
bacterial infection. Fusobacterium necrophorum either promote
disease development by increasing the damage, subsequently
permits replication of Dichelobacter nodosus. Many virulence
factors such as leukotoxin, endotoxic lipopolysaccharide,
hemolysin, hemagglutinin involve in footrot infected by
fusobacterial. Seven potential differential expression (PDE)
proteins from dairy cattle plasma implicated in the pathogenesis
of footrot.
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