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Abstract
Cheating is prevalent in the gaming industry and is causing
several types of uproars. Counter-Strike is a popular
franchise which has had up to peaks of 850 thousand
players at once playing. Professional events such as ESL One
Cologne 2015 had 1.3 million concurrent viewers. Video
games are a huge industry, sadly, integrity of the players is
lacking. Professional players have been found to be using
cheats at events, and cheaters in casual matches are
expected to be found regularly. Current anti-cheat systems
may use signature-based approaches and even heuristics,
but none of them have explicitly stated to be using data
mining techniques. Although signature methods may catch
a lot of not technically adept cheaters, the ones we need
worry about are the ones using metamorphic or
polymorphic cheats that stay undetectable to these
systems. To detect these kinds of cheats, another method
needs to be put in place. Data mining techniques used for
detecting zero-day malware as well as player behavior-
based techniques for detecting cheaters are discussed in
this proposal. The results of these methods are promising
and will hopefully rid the gaming industry of ill-minded
players.
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Introduction
Cheating in video games is commonplace and is expected on

any and all platforms. A particular genre of game is affected,
first-person shooters. This type of game is particular since a
cheater has a multitude of ways that they can cheat and can
even do so discretely in order to avoid suspicion. Aimbot, wall
hack, no recoil, radar hack; these are just a few of the possible
ways to cheat in games such as Counter-Strike. Cheaters are so
prevalent in Counter-Strike that communities were created such
as E-Sports Entertainment Association League. ESEA offers a
service for players to participate in matches that are protected
with more invasive anti-cheat software. On some days, there can
be over 20 bans performed by this software [1-5]; this may seem
minimal, but the overall number of players in a day isn’t that
high on this service. On top of that, a single cheater ruins the
match for 10 players at once.

Although it may seem unimportant to some, cheating in video
games greatly affects the profits and image of the company in
charge. Players spend several hours playing video games to
perfect themselves and become skilled. It is not enjoyable to go
up against a player that hasn’t spent as much time practicing
and can beat you unfairly by using cheats. This discourages the
player and ultimately makes them stop playing if it becomes too
recurrent.

Cheating is not only an issue for casual players. Some people
partake in competitions and professional events. Playing the
video game is their full-time job. Having cheaters participate in
these events without getting caught is an issue that has to be
solved. The utmost important events have invasive anti-cheat
and process analysis tools to ensure that the players do not have
an unfair advantage; but this is part of an arms race [6]. Cheat
manufacturers have found ways to bypass such security
measures and have stated that some of the professional players
today actually do use cheats.

Many anti-malware software currently use machine learning
to detect and prevent new malware from causing harm to their
client’s systems (e.g.: Symantec [7], Kaspersky [8], Microsoft [9],
etc.). Data mining techniques have been proven to be accurate
enough to secure systems and provide information for experts
to analyze more thoroughly when needed. Although this project
is not about malicious executable, the same ideas should be
applicable for cheat-related executable. Valve, the developers of
Counter-Strike among other games, has announced their
interest in using machine learning techniques in their anti-cheat
software VAC to detect cheaters in their products [10].

There also exists software such as PunkBuster [11] which
scans the memory of the player’s local machine. As far as it’s
described online, they seem to be using a signature-based
approach.

According to forums, heuristics seem to be used by ESEA’s
anti-cheat, PunkBuster, and probably many more; but no
information is given on whether or not they employ data mining
techniques.
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Related Work

Background
• Data mining methods for detection of new malicious

executable [1]: Schultz et al.worked on developing a
classifier capable of accurately labeling malicious executable
without the need of launching them. Information about the
executable is gathered from the binary file itself, such as:
used DLLs and function calls, strings found in the binary and
byte sequences. The motivation behind this work is that
previously used methods, such as the signature method,
does not generalize well for new (a.k.a. zero-day) malware.
Using the extracted features, they build several models using
three algorithms: RIPPER, Naive Bayes and Multi-Naive
Bayes. The results are then compared to each other and to a
homemade signature method. The highest recorded
accuracy was attained with Naive Bayes using the Strings
feature: 97.11% with a 3.8% false positive rate. They believe
that given more data and by modifying their byte sequence
feature to be variable, that they’d achieve better accuracy.

• Behavior-based cheating detection in online first person
shooters using machine learning techniques [2]: Alayed et
al. argued that current cheating detection measures are a
breach to the users’ privacy. For this reason, they propose a
server-sided behavior-based detection of players using data
mining methods. To test their idea, they created a simple
first-person shooter game called Trojan Battles and cheats to
go along with it. The cheats included: Aim lock, auto aim, and
auto fire. On top of these cheats, they added mechanisms to
make them more difficult to be detected: Slow aim and auto
miss. Several features were extracted from the server logs:
Mean aiming accuracy, hit accuracy, mean view direction
change, fire on aim ratio, fire on visible, time-to-hit rate, etc.
The data mining method used had to be appropriate for
time-series data since every log came with a timestamp and
was only appropriate for a single frame. Extracted features
would take into account a certain frame size, which were
compared to each other to discover which gave the best
results. They conclude by advising to use a separate model
for each type of cheat (i.e. Auto aim, auto fire). In general,
they get 90% accuracy when anti-detection mechanisms are
put in place, and they get >96% for blatant cheaters. Another
interesting point about this technique is that it’s possible to
detect cheaters online and offline using the recorded game
logs.

• Malicious sequential pattern mining for automatic malware
detection [3]: Fan et al. proposed using data mining
techniques to extract and detect frequencies of malicious
sequential patterns of instructions inside an executable to
classify then as malware or as benign. They say that simple
obfuscation techniques can easily bypass signature method
detection and due to the incredible rate (thousands per day)
of newly created malware, it’s not an appropriate method to
secure systems. To reduce the execution time, they perform
feature selection techniques to filter redundant patterns and
find those that are most expressive (i.e. Information gain,
max-relevance, chi-square test); only the top 100 sequences

were kept. In the case that an executable file is packed (i.e.
ASPack, PECompact), they first unpack it. Many modeling
algorithms were used and compared (i.e. Naive Bayes, Sup-
port Vector Machine, J48 Decision Tree). The best accuracy
was attained using J48 with their MSPE algorithm for feature
selection: 94.90% with a 6.25% false positive rate.

Discussion
The issue with most of these models is that a malicious

executable creator could possibly bypass its detection by
carefully manipulating their malware (i.e. Strings can be changed
or encrypted; DLL could be provided, could be packed and
obfuscated). This process is much more difficult when it comes
to opcode sequences as seen in C, especially if it we are capable
of unpacking the executable before static analysis. Although A
also proposed the byte sequence feature, unless the binary is
unpacked beforehand, it is unlikely that the sequence of bytes
would be able to distinguish between the packer code and the
actual executable’s behavior; this method had a false positive
rate of 6.01%. C extended off of A by using variable length of
opcodes instead of the fix length of byte sequences.

A assumes that an executable is malicious if the majority of
the strings inside the binary were never encountered before.
This probably has an adverse effect on the false positive rate,
especially if the software was simply packed for non-malicious
reasons (i.e. A payable software that doesn’t want people
reverse engineering crackers to steal their product). A seemed to
have better results than C by using the strings feature, but it’s
probably due to the fact that packed executable were
considered malicious a priori. Given a data set with packed
benign executable, it would have a high false positive rate.

An issue with B is when there is lag (a.k.a. Delay in the
network). This affects the features being collected and may give
false positives or other errors. Also, small frame sizes need to be
used since smart cheaters only activate cheats for a small
amount of time; this makes it more likely to catch unusual
behavior. Also, there are prevalent cheats used in casual
matches and online tournaments that are known as a wall hacks
and radar hacks (among others, manipulated models and
textures, removed smokes and other special effects, etc.). These
types of cheats are not as easily detected using behavioral-
based features; although it would be interesting to look at the
data of an eye tracker, it would infringe the users’ privacy and
they could be tampered with.

Implementation

Data acquisition
Cheats: We are targeting a franchise of games in particular:

Counter-Strike. Since there does not exist any publically available
data sets for cheating executable, even less for a particular game
title, the first step was to develop a web scraper to acquire an
acceptable amount of executable. This web scraper was
developed using ‘Java’ alongside Selenium [12], a testing
framework for web applications. It would have been simpler if
we could have used tools that would have allowed us to perform
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a GET request and simply download without going through the
web page’s user interface. The issue with this method is that the
website had measures mitigate automated bulk downloading of
their contents:

URL of download links were not obvious and indirect Must be
logged in the website to have access to cheats Throttling was
put in place (30 seconds)

Downloads wouldn’t start without an actual browser opened
and clicking on the links (Figure 1-4).

Figure 1: Example of a download URL

The web scraper is composed of three steps:

Log in to a pre-registered account

Figure 2: Login page

Collect the list of all cheats for a particular game and their
download page link and store to a file

Figure 3: Cheat list page

Go through each download page and click on the download
button

Figure 4: Cheat download page

Some precautions were taken to increase the robustness of
the scraper. First, if the throttling wasn’t done, it would wait
some time before retrying. Secondly, in case it crashed, an index
of the previously downloaded cheat was saved so it could
resume its execution later [13]. Crashes would happen
sometimes if the website was too slow; but later the waiting
time was increased and crashes ceased happening (Figure 5).
Another issue that would arise is that the chrome driver
executable responsible for the execution of the scraper would
be detected as a false positive by the anti-virus running on the
machine; so it got deleted. We disabled the anti-virus for the
remainder of the mining operation. We obtained a total of 527
cheats from the Counter-Strike family of games: 1.6, Source, and
Global Offensive.

Figure 5: Cheat binary count

Benign: Gathering the benign executable was a much simpler
task. A Bash script was made to list all the files on a Windows
system, then the list was randomized, then the first 700 files are
chosen for feature extraction. These files were checked to
ensure that they weren’t packed and that they weren’t over a
certain threshold of size. The threshold itself is not an issue in
the case of cheats since they are typically small. Although,
having a large file size could be an interesting way to bypass
detection since it would take too long to process through feature
extraction in the case of a hex dump. Since all the gathered
benign programs are typical programs found on a veteran
gamer’s PC, it represents a comparable environment game
developers would expect to run these checks in, which could
benefit accuracy.
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Data preparation
Similarly to malware developers, smart cheat developers

don’t want people being able to easily perform reverse
engineering tasks on their executable. Software called packers is
used to make the task of decompiling or doing any other kind of
static analysis slightly more difficult. Another purpose for these
tools is to give a new signature to an executable which makes it
avoid signature-based detection solutions for malware detection
as well as cheat detection (Figure 6).

In order to perform feature extraction, we have to first ensure
that the binaries are stripped off of their packer code. As
mentioned earlier, if we omitted this step, our classifier could be
fooled and simply detect packed versus not-packed files. This is
not the behavior we are trying to detect since it would have a lot
of false positives if we were to encounter packed benign
software.

A list of tools gave us the information needed to determine
what type of executable we were dealing with:

PEiD: A graphical interface that provided us with information
about the packer being used, the section names in the binary,
and the entropy of these sections. The entropy is a good
indication of whether or not a file was compressed or not.

File: A command-line program which was used in bulk on the
entire executable to determine the packers used and the type of
application (i.e.: GUI, Console).

Figure 6: Example of find output

Exescan: A command-line program that gave similar
information to the previous two tools. It was used to ensure that
the information gathered from the other tools were accurate.

More specifically, we gathered information about which
packer was used for each specific file. Using this, we can attempt
to unpack them with the appropriate software (Table 1):

Table 1: Packer and Unpacker match

Packer Unpacker

PECompact2 Unpecomp2.exe

UPX upx.exe

Here is an example of a UPX packed cheat getting unpacked
and a comparison of the packed versus unpacked contents
(Figure 7):

Figure 7: UPX unpacking output

Figure 8: UPX packed versus unpacked strings

As we see in the previous figures, the information we get
from an unpacked file is much more useful than one that was
compressed and obfuscated by a packer (Figure 8).

Extraction
• Hex dump: A hex dump is the hexadecimal representation of

a file’s entire data in memory. We’ve dumped this
information using od for every binary and kept it in a
separate file. The main issue with this feature is that the
dump itself could be ambiguous; it’s unsure whether or not
the sequences are meaningful or not.

• Assembly instructions: Tools such as objdump are
sometimes capable of disassembling an executable into its
corresponding assembly instructions. These instruction
sequences are the logic of the executable, it shows the
control flow, function calls, everything. Problems occurred
when attempting to disassemble a PE32+ format executable,
which is 64-bit. For this reason, we needed to use another
tool called dumpbin.

• DLL and API function calls: Executable depends on dynamic-
link libraries to interact with the user or with the system. The
list of the DLLs and all the function calls being made can be
extracted and give a good idea of what the executable is
capable of doing. We can get this information using objdump
again with the -p option. An issue with this is that sometimes
the information isn’t extracted properly (e.g. missing
function calls).

• Strings: Functioning similarly to hexdump, strings will simply
filter out what is considered to be characters meant to be
read in a file. Information on the DLL and API function calls
are also found in this output and it seems to be more robust
than the previous method using objdump.
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Selection
Several Java programs were coded to extract sequences of

bytes and instructions as well as strings from these files. The
program gathers the frequency of each sequence or string
across all dumps of a specific class cheats for example. A single
dump can only contribute a maximum of one frequency [14].
This way, we can find out which sequences or strings are
common across the whole class. Given this data, we can then
compare it to the other class’s results. The idea is to remove any
common sequences between the cheats and benign files and
only keep the ones who are distinguishing features.

Learning
Several algorithms were used and compared to train on the

data set features that were previously collected. Default settings
from the R language caret package are used for every model. We
did not optimize the parameters since the purpose was to find a
good enough model as quickly as possible.

Some of the algorithms were already implemented in R
libraries:

• Classification And Regression Trees (CART) k-Nearest
Neighbors (kNN)

• Random Forest (RF)
• Support Vector Machine (SVM)

Two simpler algorithms were implemented in R from scratch
in order to compare and to learn their intricacies:

Naive Bayes (NB)

A Native Bayes algorithm was developed from scratch in R. In
order to make the algorithm more robust, smoothing was done.
A small value was added to 0-frequency features and the
products were changed to sum of logs to avoid under-flowing.
Also, a Gaussian Bayes was tried using the packages and
obtained a measly 71% accuracy.

Results
The accuracy of the classifier libraries in R given the features

gathered previously yielded some impressive results. Random
Forests have proven to be an effective solution when dealing
with classifying cheats against benign binaries. Cross validation
(10-fold) and predetermined random seeds were used to ensure
that the results of the library-provided algorithms weren’t due
to chance. Random sampling (average of 10-times) was used for
the algorithms that were implemented.

Counter-Strike: 1.6 is the game that had the most samples and
is also the one with the best accuracy for the specialized model.
In practice, it doesn’t make much sense to have a model capable
of classifying cheats for multiple games; we did it here to see if
there was a correlation between them for educational purposes.

Counter-Strike: Source had the most false negatives, about 6
times more than the other two games individually.

The strings features are the most accurate of the two
methods. This is expected since the hexdump method might be

taking slices of the hexdump that isn’t appropriate. To attain a
higher accuracy, one could test out several slice sizes and
possible offsets (Table 2).

Table 2: Comparison of accuracy of features and algorithms

Table 3: Confusion matrix for random forest with strings

To better visualize the data in a crude manner, we reduced the
string features to simply be the sum of frequencies for each
class. The accuracy of this model was 6% lower than the full-
fledged bag of words (Table 3). Nonetheless, being able to
visualize the data set is helpful to understand the results better.
As shown in tables, there is an overlap between the cheat and
benign executable. More specifically, there is a dense group of
benign executable that have low benign feature frequencies and
much very little cheat features. Also, the plot was scaled so it
would look nicer, but some benign executable had a large
amount of cheat features and very little benign ones (Figure 9).

Figure 9: Reduced dimension strings feature set

Conclusions and Future Work
Cheating is so prevalent in the gaming industry and the

interest in cheats is as well. New cheats are being developed all
the time and only a data mining solution seems possible to
counteract these facts. As mentioned before, signature-based
methods aren’t capable of detecting new cheats and are easily

American Journal of Computer Science and Information Technology

ISSN 2349-3917 Vol.6 No.3:26

2018

© Under License of Creative Commons Attribution 3.0 License 5



bypassable. Although, due to the base rate fallacy, the 98%
detection rate might not seem that great, this method of
detection could be used in conjunction with other signature-
based and behavior-based methods as well as white lists for
known false positives. The action taken when cheat detection is
made could also be a simple warning, which would allow the
user to close that program and then continue playing. To
conclude, the features and models used in this paper could be
improved, even though the results are already acceptable as is.

Glossary
Executable: A file that can be executed on a computer (e.g.

typically .exe file extension on windows, but can vary).

Binary: Short-hand of binary file, which is a file that is only
interpretable by a program which knows its structure (e.g.
Human-readable file is one which contains text in the form of
ASCII characters).

Malware: An executable which performs malicious behavior
(e.g. encrypt all the files on a system; log all your key strokes,
etc).

Benign executable: An executable which performs the
expected non-malicious behavior (e.g. Executable that are
present on a fresh copy of windows).

Cheat: Un-intended changes in behavior to gain an advantage
in a video game by tampering files or injecting code. Most
cheats are in the form of executable and are typically referred to
as hacks.

Dynamic-link library: Microsoft’s solution to share libraries
across programs. Cheat developers perform DLL injection attacks
to change the behavior of a video game.

Opcode: Abbreviation of operation code which is a machine
language instruction that can be found by disassembling an
executable (e.g. push, pop, mov, add).

Packer: Short-hand of software packer, which are used to
compress executable and to slightly increase the difficulty of
reverse engineering tasks such as disassembling.

API: Short-hand of application programming interface is the
interface that programmers use to interact with a system (e.g.
An operating system).
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