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Abstract
Machine learning (ML) algorithms have potential to rapidly screen 
COVID-19 from chest x-ray (CXR).  Current deep convolutional neural 
network (DCNN) models for COVID-19 detection are limited by 
small datasets and overfitting. We hypothesized that less network 
complexity, heavy data augmentation, and transfer learning would 
result in the best model.  A COVID-19 detection model was developed 
using the COVIDx public dataset of 16,352 de-identified CXRs 
associated with known COVID-19 status by reverse transcriptase 
polymerase chain reaction (RT-PCR). Twenty-four pre-trained DCNNs 
with various enhancement features were compared using 80/20 
split for testing and validation. Among 5 pretrained DCNN’s, the low 
complexity but deep ResNet18 architecture performed best.  Data 
augmentation using horizontal flip (HF), Gaussian blur (GB), and 
cutout (CO) improved ResNet18 performance- with the ResNet18-
CO/GB model performi¬¬ng best at 1,000 iterations. Although 
transfer learning using an extrinsic pneumonia detection model 
did not boost performance, transfer learning from tuberculosis 
(TB) detection models enhanced performance of ResNet18-HF and 
ResNet18-CO/HF/GB models.  Comparing the top models at 10K 
iterations, the best model was ResNet18-GB/CO without transfer 
learning with sensitivity 82.0%, specificity 96.5%, and accuracy 
94.5%. Our findings suggest utility for automated COVID-19 detection 
by CXR using DCNN’s enhanced by data augmentation more so than 
transfer learning.

Keywords: Artificial intelligence, COVID-19, Diagnosis, Machine 
learning, Transfer learning

1. Introduction

COVID-19 is a respiratory viral illness that has erupted into a
global pandemic, affecting over 220 million people worldwide 
[1].  Diagnostic errors or delays in detection can impact timely 
identification and management of high-risk patients.  The gold 
standard in diagnostic testing, reverse transcriptase polymerase 
chain reaction (RT-PCR) is not available everywhere and turnaround 
times vary.  Alternatively, point-of-care antigen testing has lower 
sensitivity ranging from 60 to 85% [2]. Thus, there is strong 

impetus to detect COVID-19 by CXR using artificial intelligence (AI).

Based on the three-dimensional neural pattern inspired 
by the visual cortex of animals, deep convolutional neural 
networks (DCNN) are particularly suited to identify patterns in 
CXR imaging. Several models targeting diagnosis of pneumonia, 
tuberculosis, atelectasis, and lung cancer have been developed 

showed that CNN models matched or outperformed radiologists 
in detection of 11 out of 14 different pathologies from CXR [5].  
When it comes to detecting COVID-19 by CXR, radiologists are 
not particularly accurate with one series reporting sensitivity 
of <50 % [6]. It remains to be seen how machine learning 
(ML) detection of COVID-19 by CXR compares to clinicians and
existing standards for other rapid assays, like antigen testing.

Various deep convolutional neural network (DCNN) models 
have been proposed for COVID-19 detection, with accuracies 
ranging from 82% to 98% [7, 8, 9, 10]. For example, Ozturk et al. 
reported an accuracy of 98% for binary detection of COVID-19 
using DarkCovidNet [7]. Another group reported comparable 
success using a three-way classification, discriminating COVID 
from other forms of viral pneumonia as well as healthy patients 
[8]. Nonetheless, the main limitation of early models is that 
they were derived from small datasets (<500 COVID-19 patients) 
making them prone to excess validation loss and overfitting [9].  

In this study, we sought to compare the relative impact of 
DCNN enhancement features, specifically network complexity, 
data augmentation, and transfer learning on model performance 
and on the problems of validation loss and overfitting. All three 
features have potential to impact the performance of such 
models.  In the case of architectural complexity, there is conflicting 
data on the impact of network complexity on COVID-19 detection 
models. Comparing the performance of various neural network 
architectures, Ismael and Sengul reported that Wide ResNet50 
and VGG16 were both more accurate than the less complex 
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[3][4]. Furthermore, DCNN’s are not prone to human factors 
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like fatigue or distraction that decay performance.  Jones et al. 
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ResNet18 model [10]. However, in direct comparisons for non-
COVID image recognition, such as the ImageNet Large Scale Visual 
Recognition Challenges, less complex deep learning architectures 
perform better [11]. Identifying optimal architectures is highly 
relevant to future model development.

The issue of data deficit also can be mitigated by data 
augmentation or transfer learning strategies. By applying various 
image transformations on the dataset, data augmentation can 
artificially “increase” the amount of and variation of data being 
read into the model.  For instance, Ismael and Sengul reported an 
accuracy of 94.7% using a data-augmented ResNet50-enhanced 
standard vector (SVM) with the linear kernel function [10].  
Another underexplored strategy to circumvent the data deficit is 
instance-based transfer learning [8, 9]. Transfer learning involves 
a multi-step training plan—by first pre-training the model on 
a relevant pathology using a distinct dataset, such that it then 
facilitates downstream recognition of pathology of interest 
during the subsequent training phase on the dataset of interest. 
For instance, Apostolopoulos and Mpesiana reported 96.8% 
accuracy and 98.9% sensitivity using a transfer learning approach 
to train their deep-learning model to categorize X-ray images as 
either common bacterial pneumonia, COVID-19, and otherwise 
healthy patients [8]. Although promising, there are few studies 
that measure the impact of transfer learning on model accuracy.

In May 2021, de-identified open-source COVID-NET was made 
available containing over 16,000 CXR’s associated with confirmed 
COVID-19 RT-PCR status, including 2358 X-rays associated with 
COVID infection. Using this dataset, we sought to develop an 
optimized CNN model for COVID-19 detection by CXR, using 
a binary classification schema, with a minimum sensitivity of 
≥80% and a target specificity of ≥97%, consistent World Health 
Organization standards for antigen assays [12]. We hypothesized 
that the combination of low architectural complexity, heavy 
data augmentation, and transfer learning would result in a high-
performance COVID-19 CXR detection model with less validation 
loss and overfitting. 

2.Materials And Methods
2.1 Dataset Description and Pre-Processing

The CXR images used to train and test our model were obtained 
from a publicly available and de-identified COVID-19 CXR image 
dataset collected by the COVID-Net Open Initiative, COVIDx CXR-
2 [13]. The dataset, originally made available through GitHub, 
is a combination of five different publicly available datasets 

and currently represents the largest open-source collection of 
COVID-19 CXRs. The dataset contains 16,352 CXR images from 
15,100 patients. Images were pre-classified according to known 
COVID-19 status by RT-PCR, as shown in Table I. COVID-negative 
cases included patients with both normal CXR as well as patients 
with non-COVID pneumonia.   In addition, two additional datasets 
containing tuberculosis (TB) and pneumonia (PN) data were 
utilized to inform detection models that were used for transfer 
learning. The TB data set is an open-source dataset containing 
3500 Normal CXRs and 700 tuberculosis CXRs collected from 
several sources, acquired through Kaggle [14]. The pneumonia 
dataset contains 4273 pneumonia CXRs and 2709 normal CXRs 
[15]. All datasets used in this study were publicly available, 
open access, and de-identified, and therefore did not require 
institutional review.  As part of pre-processing, all images were 
resized to 600 x 700 pixels for consistency in convolutional layers.

Table 1. X-ray Image Counts According to Known COVID-19 RT-PCR status

Covid-19 positive Covid-19 negative
Test 1,886 11,194

Validation 472 2,799
Total 2,358 13,993

2.2 Experimental Design

To train models to detect COVID-19 via CXR, for each version 
of the model, we randomly allotted 80% and 20% of the images 
into the training and validation subsets, respectively. Performance 
characteristics that were assessed included sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV), 
and F-score.  We also assessed validation losses, training losses, 
and their differences to assess overfitting using a Stochastic 
Gradient Descent Function. For the final model contenders, we 
also measured accuracy.   

2.3 Common Model Features to Minimize Validation Loss

The Adam optimization algorithm was used to minimize 
training loss for all models. The Adam optimizer, a leading 
optimization algorithm in CNN image classification, is an extension 
of Stochastic Gradient Descent and uses both momentum and 
adaptive learning rates [16]. The hyperparameters used for 
training included batch size = 5, learning rate = 0.05, number 
of epochs = 20, weight of COVID-19 images in loss function = 
13993/2358, weight of COVID-19 (-) images in loss function = 1).  
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2.4 Selection of a Pre-Trained Neural Network Architecture

To select an architectural backbone for our DCNN, we compared 
five existing pre-trained architectures that are regarded as a gold 
standard for image detection ML. These included AlexNet [17], 
VGG16 [18], ResNet18 [19], WideResNet [19][20], and DenseNet-161 
[21].

Model Feature 1. Architectural Complexity 

For all the pre-trained CNN’s, we measured complexity by 
finding the number of trainable parameters in each network. 
To assess the impact of parameter number on validation loss, 
training loss, and validation loss-training loss (as an indicator of 
overtraining or overfitting), least square regression line (LSRL) 
t-tests were performed and compared across the models.

Model Feature 2. Data Augmentation using Image Transformation

Using the best performing pre-trained model, data 
augmentation image transformation strategies, as shown in 
Figure 1A, were implemented either alone or in combination to 
artificially “increase” the amount of and variation of data being 
read into the model.  To address some of our questions about data 
augmentation, we had to collect data from over six combinations of 
Random Horizontal Flip (HF), Gaussian Blur (GB), and Cutout (CO). 

a) Random Horizontal Flip – inverts images by flipping across their
horizontal axis. 50% of the images in our model underwent this
transformation.

b) Gaussian Blur - a blurring technique whose visual effect is
image smoothing in order to reduce visual noise based on a
Gaussian distribution with the parameter of kernel size. For this
study, we used a kernel size of 0.5.

c) Cutout – randomly chooses squares of a specified size remove
from the image. For this study, 10 holes of dimensions 20 pixel*20
pixel were cutout.

Figure 1. Schematic of Data Augmentation and Transfer Learning Strategies

A. Image Transformation. 

B. Transfer learning with TB or pneumonia datasets.

Model Feature 3. Instance-Based Transfer Learning

The impact of instance-based transfer learning on model 
performance for prediction of COVID-19 was applied to the 
best pre-trained model using the TB or PN datasets. These 
datasets were used to train various ResNet18 models first before 
retraining the transfer learning enhanced models on the COVIDx-
CXR dataset. 
2.5 Comparing the Top Models to Identify an Optimal Final 
Model

We selected the CNN with the optimal combination of 
performance characteristics, focusing on sensitivity and F1 score 
to identify the best performing models. For the initial models, 
statistics reported are an average over 1,000 iterations. To select 
the optimal final model, the top four performing models based 
on sensitivity and f-score were run for 10,000 iterations.  Figure 
2 summarizes the development process for our tailored DCNN.

Figure 2: Development Processes for COVID-19 CXR Detection Models

The model development process included 1) identifying a large publicly available 
CXR dataset 2) selecting from neural network architectures of varying complexity, 
3) assessing impact of data-augmentation and transfer learning 4) reassessing the 
top models at 10,000 iterations, (top model shown in bold) 5) and comparing 
performance characteristics to pre-specified World Health Organization Criteria 
for COVID-19 antigen testing.

2.6 Software, Code Availability, and Statistics

The five pre-trained open-source architectures already exist 
in the PyTorch library. We used PyTorch 1.6 to develop and train 
various iterations of the DCNN models.  PyTorch is an open-
source ML library based on the Torch library, released under the 
Modified BSD license [2]. Model performance characteristics 
were visualized and recorded through Tensor Board. Code can 
be found at: https://github.com/mynameishimal/ML-project.git. 
The confusion matrix package was used to calculate performance 
characteristics in PyTorch. Least square regression line t-tests 
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were performed using Excel. P-value <0.05 was considered 
significant. 

3. Results
3.1 Backbone CNN Architectures with Fewer Trainable 
Parameters Perform Better

Table 2 summarizes the performance characteristics for 
various architecture backbones, based on increasing complexity, 
measured by number of trainable parameters. Sensitivity 
was highest for the relatively dense AlexNet at 79.2%, but 
other performance metrics were poor.  The smallest CNN, 
DenseNet-161, had the greatest F-score. However, the slightly 
larger but still lightweight ResNet18 performed the best overall, 
with a high sensitivity (72.2%) and the highest specificity 
(79.3%).  WideResNet50, despite having a ResNet foundation 
with ~50 million (M) more parameters, did not perform as well.  

Table 2. Performance Metrics for Pre-Trained CNN Architectures of Varying 
Complexity

Pre-Trained

CNN Model

No. 
Parameters

(M)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

F-score

(%)

DenseNet-161 7 67.9 66.1 56.1 76.5 67.2

ResNet18 11 72.2 79.3 66.5 87.3 62.0

WideResNet50 61 65.7 42.3 35.6 59.0 46.8

AlexNet 66 79.2 11.7 30.8 10.8 38.7

VGG16 134 71.4 22.5 31.1 22.0 36.9

Validation set statistics are averaged over 1,000 iterations. M=million. Top 

performing model is highlighted in bold

3.2 Validation Loss Correlates Positively with Network 
Complexity

Of the pre-trained architectures, ResNet18 had the lowest 
validation loss without overfitting (loss difference of -0.05), as 
shown in Supplementary Table 1. 

Supplementary Table 1. Losses for CNN Architectures of Varying Complexity

Pre-trained 
CNN Model

No
Parameters 

(M)

Validation 
Loss

Training 
Loss

Loss 
Difference

Over
fitting

DenseNet161 7 0.64 0.59 0.05 Yes

ResNet18 11 0.50 0.55 -0.05 No

AlexNet 61 0.72 0.71 0.01 Yes

WideResNet50 66 0.70 0.68 0.02 No

VGG-16 134 0.81 0.78 0.03 No

Loss was averaged over 1,000 iterations. Loss Difference is a degree of overfitting.

The other models demonstrated higher validation and training 
losses and were more prone to overfitting. In addition, a significant 

correlation was observed between validation loss and complexity 
(LSRL T-Test, R=0.86, p=0.03) across architectures (Figure 3). 

Figure 3.  Impact of Complexity on Validation and Training Losses

Figures 3A and 3B, respectively show the positive correlation between then number 
of parameters in a pre-trained neural network architecture in millions (M), i.e., 
complexity and validation loss and training loss, respectively, at 1,000 iterations

3.3 Multiple Data Augmentation Boost Sensitivity and F1-Score 

for COVID-19 Detection

Performance characteristics adding on various image 
transformations are summarized in Table 3. Both HF and GB 
augmented the baseline ResNet18 model, whereas CO alone 
was associated with worsening performance parameters except 
for specificity. Applying multiple image transformations in 
combination boosted model performance; the best performing 
transfer learning model was ResNet18-CO/HF/GB+TB with a 
sensitivity of 83.0%, specificity of 97.2%, and overall accuracy of 
93.0% for detecting COVID-19 from CXRs.

Table 3. Performance Characteristics of Data Augmentation by Image Transformation

Model Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

F-score
(%)

ResNet18 72.2 79.3 66.5 87.3 62.0

ResNet18-
HF

75.3 80.0 69.8 76.0 65.3

ResNet18-
GB

75.0 88.6 73.8 91.9 72.6

ResNet18-
CO*

65.7 85.5 47.4 85.3 50.2

ResNet18-
HF/GB

75.6 86.7 66.6 90.4 65.6

ResNet18-
CO/GB*

83.4 95.1 83.1 95.4 80.3

ResNet18-
CO/HF

71.5 84.4 64.9 76.9 62.5

ResNet18-
CO/HF/GB

74.4 91.5 63.7 80.0 64.5

Validation set statistics are an average of over 1,000 iterations.  CO=cutout, 
HF=horizontal flip, GB=Gaussian blur. Top performing model is in bold. *selected 
for further study
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3.4 Validation Loss and Fitting Are Optimal with Multiple Image 
Transformations

Validation loss was lowest for the ResNet-CO/GB model 

at 0.17 – much lower than ResNet18 alone (0.05) and without 

overfitting (loss difference -0.01) (Supplementary Table 2). Other 

models had much higher validation loss.

Supplementary Table 2. Validation and Training Loss for Various Data 

Augmentations

Pre-trained CNN Model

Validation 
Loss

Training

Loss

Loss

Difference

Overfitting

ResNet18 

ResNet18-HF 

ResNet18-GB 

ResNet18-CO 

0.50 

0.53 

0.47 

0.61 

0.55 

0.53 

0.50 

0.60 

-0.05 

0 

-0.03 

0.01 

No 

No 

No 

Yes 

ResNet18-HF/GB 

ResNet18-CO/GB 

ResNet18-CO/HF 

ResNet18-CO/
HF/GB 

0.60 

0.17 

0.53 

0.49 

0.58 

0.18 

0.51 

0.78 

0.02 

-0.01 

-0.02 

-0.29 

Yes 

No 

No 

No 

CO=cutout, GB=Gaussian blur, HF= horizontal flip

3.5 Transfer Learning with Data Augmentation Improves Model 

Performance 

Results from instance-based transfer learning approaches 
to CNN based COVID-19 detection using TB and PN datasets 
are summarized in Table 4. Model performance with the 
PN transfer learning was poor overall, with no significant 
improvement seen. In contrast, when performing TB transfer, 
benefits were seen but only when data augmentation was also 
incorporated in the model. For instance, adding TB transfer 
learning to the ResNet18 alone decreased F-score from 62.0 
to 54.5%.  In contrast, adding the TB transfer learning to the 
ResNet18-HF model resulted in an overall F-score improvement 
due to markedly increased specificity from 80.0% to 87.7%. 
As Supplementary Figure 1 illustrates, the performance gain 
achieved early in the transfer learning process over certain 
data augmented models diminished with progressive iterations.

Table 4. Performance Characteristics with Transfer Learning

Model Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

F-score

(%)

ResNet18-TB 69.9 77.3 51.6 60.3 54.5

ResNet18-HF+TB* 74.5 87.7 73.5 87.5 68.3

ResNet18-GB+TB 71.7 79.6 56.7 79.4 58.1

ResNet18-HF/GB+TB 70.1 88.3 64.2 77.7 63.4

ResNet18-CO/GB+TB 71.9 87.7 68.1 82.7 66.5

ResNet18-CO/HF/

GB+TB*
83.0 97.2 81.2 93.1 79.8

ResNet18-PN 69.7 81.9 53.7 66.3 50.0

ResNet18-HF+PN 64.4 76.4 54.3 63.9 54.2

ResNet18-GB+PN 74.7 80.0 59.3 67.1 59.2

ResNet18-HF/GB+PN 73.0 82.2 63.4 73.6 63.2

R e s N e t 1 8 - C O /

GB+PN
68.7 77.4 52.1 61.3 53.8

ResNet18-CO/HF/

GB+PN
63.7 77.4 48.6 58.9 53.8

Supplementary Figure 1. Data Augmentation Models with or without Transfer 

Learning

Supplementary Figure 1. F-score gains achieved early in the transfer learning 
process over the HF-augmented model appear to diminish with progressive 

iterations. HF=Horizontal Flip, TB=Tuberculosis

3.6 Validation Loss Varies with Transfer Learning

The addition of transfer learning to data augmented models 
impacted validation loss variably (Supplementary Table 3). In 
general, validation loss was high for transfer learning models. 
However, for the top transfer learning model, ResNet18-CO/HF/GB 
+TB, validation loss and training loss was low but still had overfitting.
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Supplementary Table 3. Losses for Various Transfer Learning Models

Model
Validation 

Loss

Training

Loss

Loss

Difference
Overfitting

ResNet18-TB 0.59 0.61 -0.02 No
ResNet18-HF+TB 0.44 0.42 0.02 Yes
ResNet18-GB+TB 0.56 0.58 -0.02 No
R e s N e t 1 8 - H F /

GB+TB
0.57 0.60 -0.03 No

R e s N e t 1 8 - C O /

GB+TB
0.47 0.40 0.07 Yes

ResNet18-CO/HF/

GB+TB
0.27 0.17 0.10 Yes

ResNet18-PN 0.63 0.59 0.04 Yes
ResNet18-HF+PN 0.63 0.56 0.07 Yes
ResNet18-GB+PN 0.39 0.39 0.00 No
R e s N e t 1 8 - H F /

GB+PN
0.56 0.54 0.02 Yes

R e s N e t 1 8 - C O /

GB+PN
0.62 0.61 0.01 Yes

ResNet18-CO/HF/

GB+PN
0.64 0.61 0.03 Yes

CO=cutout, GB= Gaussian Blur, PN=Pneumonia. TB= tuberculosis

3.7 Final Model Optimization and Performance Metrics

At 1,000 iterations, the best overall performing model was 
ResNet18-CO/GB and the second-best model was ResNet18-
CO/HF/GB+TB. Figure 4 demonstrates the performance 
characteristics of the top models at 10,000 iterations. ResNet18-
CO/GB remained the best performing model at 10,000 iterations. 
For the final model, sensitivity was 82.0%, specificity was 96.5%, 
and accuracy was 94.5%. ResNet18-GB was the second-best 
model with a sensitivity of 79.4%, specificity 94.2%, and accuracy 
of 94.3%.  The best transfer learning model at 10,000 iterations, 
ResNet18-HF+TB had a similar F-score and accuracy but its 
performance was adversely impacted by low specificity (77.1%).

Figure 4.  Performance Characteristics of Best Performing Models at 10,000 iterations

Sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), F-score, and accuracy are shown for the validation set, with top performer 
by category in bold

All four models demonstrated mild overfitting at 10,000 

iterations, ranging from 0.02 to 0.07, with relatively low validation 

loss ≤0.25. Figure 5 demonstrates the loss characteristics for 

the top two models. Validation and training losses were least 

for the ResNet18-CO/GB model at 0.18 and 0.12 respectively, 

with loss difference of 0.06 consistent with mild overfitting. The 

second-best performing model, ResNet18-GB demonstrated 

higher relative validation and training losses of 0.25 and 0.23, 

respectively with minimal overfitting (loss difference of 0.02). 

Figure 5. Validation and Training Loss Characteristics for the Top 2 Models

A. Top performing Model B. Runner-up Model at 10K iterations.  Validation loss 
is shown in blue. Training loss is shown in green

4. Discussion

In this study, we developed a robust deep learning CNN

model for detecting COVID-19 by CXR that meets a variety of 

metrics, as outlined in the central diagram in Supplementary 

Figure 2-- including World Health Organization target standards 

for COVID antigen tests. After testing 24 model variations, our 

final one, ResNet18-CO/GB demonstrated robust performance 

characteristics with a sensitivity 82.0% and accuracy of 94%, both 

of which are comparable to existing COVID-19 antigen assays in 

clinical use. Although ours may not supersede some previously 

published COVID-19 CXR DCNN detection models, this study has 

the advantage of using the largest open access CXR datasets 

available- underscoring the potential clinical relevance of our 

model. Importantly, this model demonstrated performance 

characteristics that likely exceeds the ability of clinicians to detect 

COVID-19 by CXR alone without assistance, previously reported 

at sensitivity 47% and specificity 79% [6].
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Supplementary Figure 2. Summary Diagram

Performance characteristics of the model to key metrics [6,12].

In the process of model development, several key findings 
emerged. First, low complexity ResNet18 was the optimal 
architectural prototype for COVID-19 CXR classification, with 
better performance characteristics than more complex CNN’s. 
Second, data augmentation was critical to augmenting DCNN 
performance. All three image transformations, random HF, GB, 
and CO, enhanced model performance in various combinations. 
Stacking image transformations provided the most effective 
enhancement strategy- yielding ResNet18+CO/GB as the optimal 
model. Finally, transfer learning was of little benefit as a standalone 
CNN feature, and was best used in combination with data 
augmentation.  Importantly, although transfer learning appeared 
promising when models were run with fewer iterations, these 
models exhibited declining performance at 10,000 iterations and 
ultimately, did not perform as well as data augmented models. 

4.1 Backbone Architecture Impacts Model Performance

Using ResNet18 as architectural underpinning was an 
important feature of this model. Previous studies reported 
Wideset and VGG-16 as having better performance 
characteristics than ResNet18 for COVID CXR detection models 
[25].  However, we found that the less complex CNN’s like 
Densenet and ResNet18 had higher specificity and F-score.  
There was also a strong correlation between CNN complexity 
and validation loss in COVID-19 detection, with ResNet having 
the least validation loss and no overfitting to suggest an 
overtrained model.  Structurally, whereas the back propagation 
technique can cause VGG16 and AlexNet’s stagnate with 
progressive iterations, ResNet resolves the so-called vanishing 
gradient problem and has the advantage of other architectural 
solutions that lend depth, like shortcut or skip connections.

4.2 Data Augmentation Boosts Model Performance

This study supports the longstanding theory that data 

augmentation is critical to drive ML performance and 
translates this to CXR detection of COVID-19. All three image 
transformations- GB, HF, and CO- either alone or in combination 
improved the ResNet18 model.  GB, in particular was effective 
standalone feature; this observation in a COVID-19 model 
extends previous findings that GB improved deep-learning image 
classification accuracy of non-COVID pathologies by CXR’s by 
0.05% [26].  The present study found that data augmentation 
methods were not necessarily additive in their effects.  For 
example, the combined use of HF/GB improved did not improve 
on the ResNet-GB model even though each feature individually 
boosted ResNet18 performance. Similarly, CO alone did not 
boost ResNet18 performance, whereas the CO/GB combination 
yielded the most robust model.  This observation underscores 
the importance of experimenting with different combinations of 
image transformations.

4.3 Transfer Learning Variable Effects on CNN Performance

Another unique aspect of this study is that the experimental 
design teases out the use of different types of instance-based 
transfer learning and the relative impact of stacking data 
augmentation effects on transfer learning models. For example, 
tuberculosis transfer learning improved multiple models, 
whereas using a pneumonia transfer learning dataset did not. 
Interestingly, TB transfer learning, as a standalone feature, did 
not boost the performance of the ResNet18 model.  Instead, it 
worked best in combination with data augmentation features. 
The best performing transfer learning model resulting from 
combining all three image transformations (CO, GB, and HF) prior 
to transfer learning. This is consistent with the previous finding 
of Zhang et al. who reported good results in their COVID-19 CXR 
detection model, using a ResNet 34 model, with multiple image 
transformations (random resized crop, rotation, horizontal flip 
and vertical flip) in combination with transfer learning [9].

Ultimately, in this study, however, the best transfer learning 
models did not perform as well as the best data augmented 
models.  It is possible the architectural backbone selected 
may impact the value of transfer learning.  In a comparison of 
15 different CNN architectures, Rahaman et al. concluded that 
VGG-19 works best with transfer learning for COVID-19 detection 
[27].  Another contributor might be that transfer learning models 
appeared to demonstrate declining performance with progressive 
iterations beyond 1,000 suggesting that these models may be 
prone to overfitting. Successful application of transfer learning 
in COVID CXR detection may be a function of multiple variables, 
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e.g., a CNN size, supervision features, the relevance of the
transfer learning dataset, and the size of the datasets involved;
further investigations are required to determine under what
circumstances it would enhance future COVID-19 CXR models.

4.4 Minimizing Validation Loss, Training Loss, and Overfitting

In addition to identifying a robust COVID-19 CXR detection 
model, this study uniquely focused on the problem of validation 
loss and overfitting that are common to small datasets.  Deep 
learning models perform best with training by large data sets. 
The final model ResNet-CO/GB had the lowest validation loss 
of all the models consistent with its robustness.  However, we 
did identify some mild overfitting when the model was run for 
10,000 iterations. This can be addressed in a few ways including 
terminating the model earlier, enlarging the training dataset, or 
adding other data augmentation techniques.  Nonetheless, this 
model provides a foundation for future model development by 
addressing the question of which enhancements work best 

4.5 Limitations

This study has its limitations. First, the model is based on 
open-source data, so the methodology of chest X-ray acquisition 
and the clinical stage of the COVID is not known. Second, the 
model is designed to assess for COVID-19 in a binary fashion.  In 
the situation where a patient has pathology that is not COVID-19, 
additional assessment may be required. Such binary decision 
models still benefit clinical practice by providing a meaningful 
screen but may require physician overread or incorporation into a 
more complex CXR interpretation model, such as CHEXNet which 
is designed to detect other pathologies [28]. It remains to be seen 
how this model compares to unassisted radiologists or impacts 
clinical workflow in prospective study.

5. Conclusion

In this study, we developed a robust, relatively straightforward
model of COVID-19 CXR detection with sensitivity 82%, specificity 
96.5%, accuracy 94.5%.  These performance characteristics 
exceed previously reported physician’s ability to detect COVID-19 
by CXR without AI and are comparable to existing World Health 
Organization standards for COVID-19 antigen assays in clinical 
use. This study added value to existing literature by exploring 
the impact of various CNN facets and enhancement in terms of 
performance and validation loss.  Future directions would be to 
further assess other data augmentation strategies, to consider the 
use of different architectural backbones with transfer learning, 
and to assess this model performance relative to clinicians.  
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